

University of North Dakota UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

12-1-1983

Kinetic Analysis of the Ion Exchange of Sodium from Subbituminous Coal

Jason Allen Chesley

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Chesley, Jason Allen, "Kinetic Analysis of the Ion Exchange of Sodium from Subbituminous Coal" (1983). *Theses and Dissertations*. 1183. https://commons.und.edu/theses/1183

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.

Kinetic Analysis of the Ion Exchange of Sodium from Subbituminous Coal

by Jason Allen Chesley

Bachelor of Science in Chemical Engineering University of North Dakota, May 1982

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

December 1983

This thesis submitted by Jason Allen Chesley in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whom the work has been done.

Dorab N. Baria Wayne Rtmbe

Tom Baseway

This thesis meets the standards for appearance and conforms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.

Title <u>Kinetic Analysis of the Ion</u> <u>Exchange of Sodium from</u> Subbittuminous Coal

Department Chemical Engineering

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairman of the Department or the Dean of the Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Signature Jason allen Chesley Date _____9/26/83

CONTENTS

FIGURE	ES	•	•	•	vi
TABLES	S		•	•	ix
ACKNOW	WLEDGEMENTS	•	•	•	xiii
ABSTRA	ACT	•	•	•	xiv
Chapte	er				page
I.	INTRODUCTION	•	•	•	1
II.	PREVIOUS EXPERIMENTAL WORK	•	•	•	4
III.	THEORY OF ION EXCHANGE	•	•	•	6
	Introduction	•	•	•	6
	Kinetics	•	•	•	11 12
IV.	EXPERIMENTAL EQUIPMENT AND PROCEDURE				18
	Experimental Procedure	•	•	•	18 20 22
v.	RESULTS AND DISCUSSION	•	•	•	24
	Results	1 fi	ıri	•	24
	Acid Concentration, and Residence Tim Particle Size	me 	• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	39 39 41 43 46 47 47 49 49 50 67
VI.	CONCLUSIONS		•	•	68

4

- iv -

Append	ndix		page
A.	SAMPLE CALCULATIONS		90
в.	RAW DATA		86
C.	RESULTS		118
D.	CALCULATIONS FOR STATISTICAL ANALYSIS		133
E.	ABBREVIATIONS USED		138
REFER	RENCES		141

FIGURES

Figure		page
1.	ILLUSTRATION OF ION EXCHANGE SYSTEM	7
	CATION REMOVAL AS A FUNCTION OF TIME USING:	
2.	0.1070 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio	25
3.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio	26
4.	0.1070 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio	27
5.	0.1070 N H ₂ SO ₄ solution, 0.082 mm particle radius (80-100 mesh size), and 10/1 liquid to solid mass ratio	28
6.	0.1565 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio	29
7.	0.1565 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio	30
8.	0.1565 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio	31
9.	0.1959 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio	32
10.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio	33
11.	0.1959 N H_2SO_4 solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio.	34

- vi -

12.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio	35
13.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 2/1 liquid to solid mass ratio	36
14.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio	37
15.	SODIUM REMOVAL AS A FUNCTION OF TIME SHOWING THE EFFECT PARTICLE SIZE HAS ON SODIUM REMOVAL USING A 0.1070 N H ₂ SO ₄ CONCENTRATION AND A 10/1 LIQUID TO SOLID MASS RATIO	40
16.	SODIUM REMOVAL AS A FUNCTION OF TIME SHOWING THE EFFECT INITIAL H ₂ SO ₄ CONCENTRATION HAS ON SODIUM REMOVAL USING A 0.502 mm PARTICLE RADIUS (14-20 MESH SIZE) AND A 10/1 LIQUID TO SOLID MASS RATIO	42
17.	SODIUM REMOVAL AS A FUNCTION OF TIME SHOWING THE EFFECT LIQUID TO SOLID MASS RATIO HAS ON SODIUM REMOVAL USING A 0.502 mm PARTICLE RADIUS 14-20 MESH SIZE) AND 0.1070 N AND 0.1959 N H ₂ SO ₄ CONCENTRATION	48
	EXPERIMENTAL AND PREDICTED SODIUM REMOVAL AS A FUNCTION OF TIME USING:	
18.	0.1070 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio	51
19.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio	52
20.	0.1070 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio	53
21.	0.1070 N H_2SO_4 solution, 0.082 mm particle radius (80-100 mesh size), and 10/1 liquid to solid mass ratio.	54
22.	0.1565 N H_2SO_4 solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio.	55

23.	0.1565 N H_2SO_4 solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio				56
24.	0.1565 N H_2SO_4 solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio.				57
25.	0.1959 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio				58
26.	0.1959 N H_2SO_4 solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio.		•		59
27.	0.1959 N H_2SO_4 solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio				60
28.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio	•		•	61
29.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 2/1 liquid to solid mass ratio		•		62
30.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio				63

TABLES

Table				page
1.	ANALYSIS OF TEST COAL			19
2.	TEST CONDITIONS			21
3.	ANOVA TABLE	•		44
4.	SELF DIFFUSION COEFFICIENTS			64
5.	AS RECEIVED COAL ANALYSIS	•	• •	87
	RAW DATA FOR CATION REMOVED VARYING RESIDENCE TIME USING:	CE		
б.	0.1070 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio	•		88
7.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio			90
8.	0.1070 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio			92
9.	0.1070 N H ₂ SO ₄ solution, 0.082 mm particle radius (80-100 mesh size), and 10/1 liquid to solid mass ratio	•		93
10.	0.1565 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio			94
11.	0.1565 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio	•		96
12.	0.1565 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio			98

13.	0.1959 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio	99
14.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio	100
15.	0.1959 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio	101
16.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio	102
17.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 2/1 liquid to solid mass ratio	103
18.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio	104
	ANALYSIS OF PROCESSED COAL VARYING RESIDENCE TIME USING:	
19.	0.1070 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio	105
20.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio	106
21.	0.1070 N H_2SO_4 solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio.	107
22.	0.1070 N H_2SO_4 solution, 0.082 mm particle radius (80-100 mesh size), and 10/1 liquid to solid mass ratio.	108
23.	0.1565 N H_2SO_4 solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio.	109
24.	0.1565 N $H_{2}SO_{4}$ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio.	110

25.	0.1565 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio 1	11
26.	0.1959 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio 1	12
27.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio 1	13
28.	0.1959 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio 1	14
29.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio 1	15
30.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 2/1 liquid to solid mass ratio 1	16
31.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio 1	17
	RESULTS FOR CATION REMOVED VARYING RESIDENCE TIME USING:	
32.	0.1070 N H_2SO_4 solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio 1	19
33.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio 1	20
34.	0.1070 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio 1	21
35.	0.1070 N H_2SO_4 solution, 0.082 mm particle radius (80-100 mesh size), and 10/1 liquid to solid mass ratio 1	22
36.	0.1565 N H_2SO_4 solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio 1	23

37.	0.1565 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio
38.	0.1565 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio
39.	0.1959 N H ₂ SO ₄ solution, 2.013 mm particle radius (4-6 mesh size), and 10/1 liquid to solid mass ratio
40.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 10/1 liquid to solid mass ratio
41.	0.1959 N H ₂ SO ₄ solution, 0.178 mm particle radius (35-48 mesh size), and 10/1 liquid to solid mass ratio
42.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio
43.	0.1070 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 2/1 liquid to solid mass ratio
44.	0.1959 N H ₂ SO ₄ solution, 0.502 mm particle radius (14-20 mesh size), and 5/1 liquid to solid mass ratio

ACKNOWLEDGEMENTS

I would like to express gratitude to my committee, Dr. Dorab Baria (advisor), Professor Wayne Kube, and Dr. Manoj Basuray, for their much appreciated help and inspiration on this project.

Special thanks must go to Dr. Thomas Owens and Dr. Dorab Baria for their efforts in arranging my monetary aid to enable me to go on to graduate school.

I would like to thank the group of special people who helped me do my research. This talented group is comprised of Barry Olson; Melanie Hetland, who also inked the awesome figures in this report; Shane McKinnon; Dawn Korynta; and Ray DeWall. The correctness of my grammar can be attributed to the aid given me by Patricia Lazarus. Additional thanks goes to Lorraine Fortin for her indespensable help on the Script language used to type out this report.

A loving acknowledgement goes to my great family for their understanding and encouragement. Thanks Mom, Dad, Teresa, Carol, and Deanna.

Finally, I want to say thank you Lord Jesus for Your steadfast love and blessings. From You all good things come and I have been greatly blessed.

- xiii -

ABSTRACT

The removal of Na from subbituminous coal by ion exchange was investigated on a batch basis with H-ion donated by dilute aqueous H_2SO_4 . The exchange of K, Mg, Ca, and Al from the coal was also observed. The four parameters studied were initial H_2SO_4 concentration, coal particle size, residence time, and liquid to solid mass ratio.

Results from this investigation indicate that at equilibrium 95 % of the initial Na content of the subbituminous coal can be removed by ion exchange with dilute aqueous H_2SO_4 . It was also determined that Na removal is directly proportional to the residence time, and inversly proportional to particle size. The concentration of H-ion, as controlled by the liquid to solid mass ratio, and initial H_2SO_4 concentration have no significant effect on the rate of Na removal, provided there is sufficient H-ion present to complete the exchange.

Experimental results indicated that particle diffusion was the rate determining step. The following Vermuelen's approximation was used to predict the kinetic response for the removal of Na by ion exchange with good results.

- xiv -

 $\text{\$ of initial Na removed} = \left[1 - \exp\left(-\frac{\overline{D}t\pi^2}{-\frac{\overline{D}}{r_o^2}}\right)\right]^{1/2} \text{*}X^*(100\text{\$})$

where D is the self-diffusion coefficient for H-Na ion exchange within the particle, mm²/min; t is the time of the exchange, min; r is the radius of the exchange particle, mm; and X^o is the fraction of Na removal at equilibrium.

The H-ion:Na-ion self-diffusion coefficient was found to be nearly constant over the range of H_2SO_4 solution concentration used, at a value of 0.0018 mm²/min (3.0 x 10⁻⁷ cm²/sec).

Chapter I INTRODUCTION

Even in the bleakness of the recent recession, coal is one of the few bright spots on the U.S. economic scene. Coal consumption reached an all time peak of 838 million tons in 1981 and was only 3 % below this in 1982, due to a weakened economy $(\underline{1})$.¹ Predictions for 1983 suggest a repeat of the 1982 consumption level with a chance for increased production tied with the expected economic recovery ($\underline{2}$). Helping to sustain the boost in coal demand is its prime customer, the electric utilities. Coal's share of electric power generation in the U.S. reached 53 % in 1982 and was off by only 1 % in 1983 ($\underline{1},\underline{2}$). Continued growth in coalfired steam electric power plants is certain with the commitment of 150 new units (79,670 MW) through 1997, and a possible additional 30 power plants (15,113 MW) proposed for construction by the year 2000 (3).

A problem encountered in the use of coal-fired power plants is ash fouling on the fire-side of the heat exchanger tubes. Ash fouling obstructs gas flow in boiler passes, re-

- 1 -

¹ Numbers in parenthesis that are underlined refer to references cited at the end of this report.

duces heat transfer, lowers efficiency, and causes hot spots $(\underline{4})$. Traditionally, there have been two basic methods used to overcome ash fouling. One method is to modify the boiler design. Unfortunately, such modifications represent a substantial capital expenditure $(\underline{5})$. The other method, which may be economically preferable, is using either a fuel additive or some method of fuel treatment. The use of fuel additives has been studied with varied results, while fuel treatment by the use of ion exchange has been shown to be effective $(\underline{4}, \underline{6}, \underline{7}, \underline{8}, \underline{9}, \underline{10})$. The use of fuel additives or treatment has the added advantage of allowing high-fouling low rank coals to be burnt in existing facilities.

Two of the major parameters linked with ash fouling of western U.S. low rank coals are Na and ash contents. As shown by many pilot plant and utitlity boiler tests, any combination of high values of Na (above 5 % Na₂O in the ash) and ash (above 8 % in dry coal) can lead to high fouling potential (9).

The practice today is to burn only low Na coals or mixtures of low and high Na coals (<u>9</u>). With the supply of clean burning, low-fouling run-of-mine coals being depleted, some method of treatment to allow the burning of lower grade, higher fouling coals is needed and carries many advantages over boiler modifications.

Coal, for practical purposes, is only a generic title for a solid which is very heterogeneous in nature. Na content in the coal can vary from mine to mine, as well as in different locations in the same seam in the same mine.

Most of the Na and K, and some of the Ca and Mg found in low rank coals, are present in the organic structure of the coal as salts of humic acid (<u>11</u>). Since low rank coals such as lignite and subbituminous coal are salts of a weak acid, these ions can be exchanged with H-ions donated from an acid in an aqueous medium, such as a H_2SO_4 solution.

The present work investigates the ion exchange of Na from a Montana subbituminous coal with H-ion, donated by dilute H_2SO_4 , as determined in a stirred beaker on a batch basis. Four parameters were studied. These were initial H_2SO_4 concentration, coal particle size, residence time, and liquid to solid mass ratio.

Chapter II PREVIOUS EXPERIMENTAL WORK

The removal of Na from lignite via ion exchange has been studied using batch (7, 12, 13, 14) and continuous countercurrent (13, 15, 16, 17) systems. Some additional work has been done on removal of Na from subbituminous coal (9, 18).

Work done on the batch basis used water, CaO, CaCl₂, HCl, and H₂SO₄ solutions as exchange media. Variables studied included residence time, particle size, initial solution concentration, liquid to solid mass ratio, agitation, and moisture content of the coal. The major results from past batch work were: a) Na is a cation which was readily exchangeable from low rank coal; b) ionic solutions were more effective in removing Na by ion exchange than distilled water, indicating Na in the coal was not present as water soluble salts; c) particle size was a critical parameter in the exchange of Na; and d) agitation had no effect on ion exchange as long as it was greater than a minimum value.

Studies completed on the continuous countercurrent system used solutions of H₂SO₄, or CaO and other calcium salt solutions as exchange media. Parameters investigated in-

- 4 -

clude solid residence time, initial solution concentration, liquid to solid mass ratio, particle size, and mositure content of the coal. Two major results from the past continuous work were: a) among exchange media used, H₂SO₄ and CaCl₂ solutions were found quite effective due to the fact H and Ca are highly ionic in these solutions; and b) increasing the liquid to solid mass ratio above 2/1 does not yield a significant increase in Na removal. The results from the continuous countercurrent system corroborate the work done on the batch basis.

Studies have shown that Na in the ash contributes to both ash deposit strength and quantity for low rank coals $(\underline{12})$. Ion exchange as a means of coal preparation has been found to be effective in the reduction of Na in the coal and thus effective in the reduction of ash fouling problems $(\underline{17})$.

Work done with lignite, both batch and continuous basis, have used integration of Ficks law to predict the response of the removal of Na by ion exchange $(\underline{13}, \underline{15}, \underline{16})$. One investigation used Vermuelen's approximation, the theoretical integrated equation used in this report, to predict the kinetic response of the removal of Na from lignite on a continuous basis with good correlation (16).

Chapter III THEORY OF ION EXCHANGE

3.1 INTRODUCTION

The process of ion exchange is a redistribution of ions from one environment to another. With very few exceptions, this exchange is reversible. Additionally, ion exchange is a stoichiometric process, with any ion removed from the exchange medium replaced by an equivalent ion of the same sign from the ion exchanger, thereby maintaining electroneutralilty.

Ion exchangers are defined as insoluble solid materials which carry exchangeable cations and/or anions. If the ion exchanger contains ion exchangeable cations, it is called a cation exchanger; and conversly if the ion exchanger contains exchangeable anions, it is called an anion exchanger.

The ion exchanger consists of a framework held together by chemical bonds or lattice energy. This framework possesses either a surplus positive or negative charge, compensated by mobile ions with an opposite charge, the so called A counter-ions. Able to move freely within the

- 6 -

framework of the ion exchanger, the A counter-ions may be replaced by other counter-ions of equivalent charge from solution. Y co-ions exist in the solution in order to preserve electroneutrality of the solution.

Figure 1 shows a diagram of the ion exchange system and the process of ion exchange is illustrated by the following example. An ion exchanger can be compared to a sponge, with the A counter-ions moving freely within the pores. The sponge is immersed in an electrolyte solution, made up of mobile Y co-ions, which have the same sign as the fixed ionic groups in the framework of the ion exchanger, and B counter-ions. The A counter-ions in the sponge can leave through the pores, but since electroneutrality of the sponge must be maintained, a stoichiometrically equivalent number of B counter-ions from the solution must enter the

FIGURE 1 - Illustration of Ion Exchange System

pores to compensate. Thus, a counter-ion can only leave the sponge upon simultaneous entry of an equivalent ion.

According to this simple model, the amount of counterion in the ion exchanger is a constant, governed only by the magnitude of the charge of the framework of the ion exchanger, and independent of the nature of the counter-ion. In reality, this situation is complicated by the possibility of electrolyte sorption into the ion exchanger.

Normally, the pores of the ion exchanger may contain not only counter-ions, but also solvent and solutes, which entered the pores upon contact with a solution. Sorption is usually defined as the uptake of solute, and presence of the solvent may cause swelling of the ion exchanger.

The sorption of the electrolyte solution increases the number of B counter-ions and accompaning Y co-ions in the ion exchanger. Thus, sorption means that the counter-ion content of an ion exchanger depends not only upon the magnitude of the framework charge, but also on the Y co-ion content.

Ion exchange is a diffusion process, dependent upon the mobility of the counter-ions. This diffusion, generally does not follow the simple, well known rate laws; rather electric forces affect the fluxes of ions, causing deviations.

As a rule, the ion exchanger prefers one counter-ion to another. This implies that redistribution is not strictly statistical. Some of the most important causes for preferance are: a) the size and valence of the counter-ion influence the electrostatic interactions between the charged framework and the counter-ions, b) other interactions between ions and their environment beyond electrostatic forces are effective, and c) the narrow pores may prevent large counter-ions from entering the ion exchanger.

3.2 DONNAN POTENTIAL

Equilibria of ion exchangers using electrolyte solutions are complex, and the observed effect of different concentrations of exchange medium on removal of A counter-ions is explained by the Donnan potential.

Consider a low rank coal as an ion exchanger, placed in a dilute solution of a strong electrolyte, such as H_2SO_4 . If no electrolyte is assumed to be sorped in the ion exchanger, a large concentration difference exists between the two phases; high A counter-ion concentration in the ion exchanger and high Y co-ion concentration in the electrolyte. If there was no charge associated with the ions, the concentration gradients would be levelled to equilibrium values by diffusion. Since the ions are charged, diffusion would dis-

turb electroneutrality. Movement of both the A counter-ion into solution and Y co-ion into the ion exchanger causes the build up of charges, a positive charge in the solution and a negative charge in the ion exchanger. The first few ions which diffuse build up an electric potential difference, called the Donnan potential, between the ion exchanger and electrolyte solution. This potential pulls the positive A counter-ions back into the ion exchanger and negative Y coions back into solution. An equilibrium is thus established where the gradient set up by the concentration differences is balanced by the induced electric field. This effect is analogous in the anion exchanger with opposite signs for the various species.

The Donnan potential repels Y co-ions from entering the ion exchanger and thus maintains the internal Y co-ion concentration at an equilibrium level. Since Y co-ion uptake and electrolyte sorption are equivalent because of electroneutrality, the electrolyte is at least partially excluded from entering the ion exchanger.

The presence of large amounts of Y co-ions in the ion exchanger will have a strong influence on the mobility of the counter-ions. Usually the amount of Y co-ion in the ion exchanger is kept low by the Donnan potential, but if the concentration of the exchange medium is strong, some Y coions may be forced into the ion exchanger, thus influencing

counter-ion mobility. Consequently, changing exchange medium concentration could affect the rate of ion exchange by causing Y co-ions to be forced into the ion exchanger.

3.3 KINETICS

The ion exchange process can be separated into five steps. These steps are: a) diffusion of the counter-ions from the bulk of the solution across the film layer clinging to the ion exchanger particle surface, b) diffusion of the counter-ions from the surface of the ion exchanger through the pores to the exchange site, c) the chemical exchange of the counter-ions, d) diffusion of the exchanged counter-ions outwards from the exchange site to the surface through the pores of the ion exchanger, and e) diffusion of the exchanged counter-ions across the film layer to the bulk solution (<u>19</u>). Chemical exchange and the movement of species across boundaries are considered to be quite rapid.

By having the agitation at a high rate, the film clinging to the ion exchanger particle is assumed to be very thin, and migration through it is quite rapid. Consequently, particle diffusion within the ion exchanger particle is considered to be the rate controlling step in the present experimental investigation.

While it is true that Donnan potential keeps substantial amounts of Y co-ion from entering the ion exchanger during ion exchange, it does not hinder exchange of the counter-ions. Thus, Y co-ions do not participate in ion exchange and they have little effect on the rate of exchange.

3.3.1 Particle Diffusion

Since ion exchange is a diffusion process, rate laws can be derived using diffusion equations. Though appearing simple at first glance, the derivation is not as straight forward as it would seem. The problem can only be tackled by using certain boundary conditions. One of the simplest is the case of isotopic exchange, where the system is assumed to be in equilibrium except for an isotopic distribution (for example ${}^{1}\text{H}:{}^{2}\text{H}$). The following derivation is taken primarily from work done by Helfferich for a system where particle diffusion is rate controlling (19).

Ficks first, law describes the flux of the isotope A in the ion exchanger.

 $J_{\lambda} = -\overline{D} \text{ grad } \overline{C}_{\lambda}$

where J_A is the flux (in moles per unit time and cross section), C_A is the concentration of A, and D is the self-diffusion coefficient. (Quantities with bars refer to the interior of the ion exchanger)

(1)

Time dependence of the concentration is related to the flux by the following material balance, Ficks second law.

$$\frac{\partial \overline{C}_{A}}{\partial t} = -\operatorname{div} J_{A}$$
(2)

where t is time of ion exchange

Combining equations (1) and (2), including the restrictions of spherical geometry for the ion exchanger and constant diffusion coefficient, yields in spherical coordinates

$$\frac{\partial \overline{C}_{A}}{\partial t} = \overline{D} \left(\frac{\partial^{2} \overline{C}_{A}}{\partial r^{2}} + \frac{2}{r} \frac{\partial \overline{C}_{A}}{\partial r} \right)$$
(3)

where r is the radial diffusion path in the ion exchanger sphere

Equation (3) may be solved using appropriate initial and boundary conditions. One simple initial condition is that the concentration of A counter-ions in the ion exchanger is uniform, with no A present in the exchange medium. This initial condition can be written as:

For $r > r_0$ at t = 0, $C_A(r) = 0$ For $0 \le r \le r_0$ at t = 0, $\overline{C}_A(r) = \overline{C}_{A0}$ = constant (4) where r is ion exchanger particle radius and C_{A0} is the initial concentration of A counter-ions in the ion exchanger.

Two additional simplifying conditions may also be considered. The first, and the one used in this analysis, applies when the concentration of A counter-ion in solution remains neglible throughout the ion exchange process. This condition is met in batch experiments if the solution volume is so large that

$$\overline{CV} << CV$$
 (5)

where C is the total concentration of counterions, \overline{V} is the total volume of ion exchange material, and V is volume of solution.

This condition is called "infinite solution volume". If requirement (5) is not met, then a second boundary condition called "finite solution volume" must be applied. This second boundary condition is more general and will not be discussed here since infinitie solution volume holds true in the present study.

Considering an infinite solution volume with particle diffusion rate controlling, the concentration of A counterions at the ion exchanger surface is the same as that in the bulk solution and this concentration will not change.

For
$$r = r_0$$
 at $t > 0$, $\Delta \overline{C}_{a}(t) = 0$ (6)

The solution of equation (3) under the conditions of Equations (4) and (6) yields a function $C_A(r,t)$. Integration of this function through the ion exchanger particles gives the following expression:

$$U(t) = \frac{\overline{Q}_{AO} - \overline{Q}_{A}(t)}{\overline{Q}_{AO} - \overline{Q}_{A\infty}} = 1 - \frac{6}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \exp\left(-\frac{\overline{D}t\pi^{2}n^{2}}{r_{O}^{2}}\right)$$
(7)

where $Q_A(t)$ is the amount of A in the ion exchanger at time t, Q_{AO} is the initial amount of A in the ion exchanger, Q_{AO} is the amount of A at equilibrium in the ion exchanger, and U(t) is the fraction of attainment of equilibrium.

A summary of the conditions used for Equation 7 includes: a) a constant diffusion coefficient, b) no isotope (counter-ion) A initially in the exchange medium, c) spherical exchange particles, d) a well stirred electrolyte solution for a exchange medium, e) particle diffusion as rate controlling, and f) an isotopic distribution of counterions.

Less accurate than Equation (7), but more useful for practical work, is Vermeulen's approximation. It is the Vermeulen's approximation that will be used in this investigation.

$$U(t) = \left[1 - \exp\left(-\frac{\overline{D}t\pi^2}{r_o^2}\right)\right]^{1/2}$$
(8)

Equation 8, Vermuelen's approximation, gives the fraction of equilibrium attained and not fraction ion removed. The fraction ion removed can be determined by multiplying the fraction of equilibrium attained by the equilibrium value for the fraction ion removed.

Ion Removed = U(t) * X * (100)

where X is the equilibrium value for the fraction ion removed (In this report the symbol * shall be used as a multiplication sign.)

The half time, $t_{1/2}$, of ion exchange may be readily found by the use of equation (7). Substituting U(t) = 0.5 yields

$$t_{1/2} = 0.030 - \frac{c^2}{\overline{D}}$$
(10)

It can be seen from the derived equations that the relative rate of ion exchange is proportional to the diffusion coefficient in the ion exchanger and inversly proportional to the square of the ion exchanger particle radius.

In Equations (7) and (8), there is no dependence on solution concentration for the exchanger rate. Solution concentration will have an effect on the self-diffusion coefficient, since the mobility of the B counter-ion from the exchange medium will be affected by a change in Y co-ion content of the ion exchanger. The Donnan potential will generally restrict the amount of Y co-ion entering the ion exchanger, but if the Y co-ion concentration becomes large enough, Y co-ions may be forced into the particle and affect the mobility of the counter-ions. While there is not a direct relationship between the exchange rate and solution concentration, the concentration will have an indirect ef-

fect by influencing the mobility of counter-ions and thus influencing the self-diffusion coefficient.

Equations (7) and (8) are derived under the assumption of isotopic exchange. Unfortunately, quantitative treatment of ion exchange is much more complicated. The fact that the fluxes of two different ionic species may couple together means that the system cannot be described by one constant diffusion coefficient. More complex derivations for the ion exchange rate equations can be made using the Nernst-Planck equations. Work done utilizing these more complex equations helped support the explanation concerning interactions of electrical fluxes and other complications which exist (13). In the present investigation, it was decided to use the less complicated Vermuelen's approximation for a theoretical integrated equation. Coal is far from being the ideal ion exchanger for which the rate equation derivations are made. For example, coal particles are not spherical nor are they homogeneous. Use of the more complex equations for such a non-ideal ion exchanger such as coal, does not seem appropriate.

Chapter IV

EXPERIMENTAL EQUIPMENT AND PROCEDURE

4.1 EXPERIMENTAL PROCEDURE

Utilizing a batch method of investigation, the ion exchange of subbituminous coal with a H_2SO_4 solution was studied. This was done in a 250 ml beaker, in which measured quantities of the coal particles and acid solution were combined. The resulting mixture was agitated by a 3-blade, propeller stirrer rotating at approximately 200 rpm. This procedure was developed in previous work (13).

The solid and liquid residue were separated by suction filtration after the designated time for the individual run, and stored in separate containers for further analyses. The as received coal was also analyzed. An average analysis for the Nerco, Montana subbituminous coal is given in Table 1, and a compilation of the various as received coal analysis is found in Table 5 in Appendix B.

TABLE 1

ANALYSIS OF TEST COAL

MODIFIED PROXIMATE ANALYSIS (AS RECEIVED BASIS)

CONSTITUENT	PERCENT
Moisture	23.4
Ash	2.8
Fixed Carbon and Volatile Matter	73.8
Total	100.0

SELECTED ASH CONSTITUENTS (AS RECEIVED BASIS)

CONSTITUENT	PERCENT IN ASH	
Na ₂ 0	9.6	
K ₂ O	0.5	
MgO	5.2	
CaO	20.7	
A1 2 ⁰ 3	12.6	
4.2 DESCRIPTION OF PARAMETERS

The four parameters investigated were initial H₂SO₄ concentration, coal particle size, residence time, and liquid to solid mass ratio. A summary of the various parameters used for the runs is found in Table 2.

The three initial H_2SO_4 concentrations used were 0.1070, 0.1565, and 0.1959 N. According to theory, a change in exchange medium concentration should have no effect on the rate of ion exchange if particle diffusion is rate determining. A directly proportional effect on the rate of ion exchange would indicate that film diffusion is prevalent. The different acid solutions were prepared by diluting concentrated H_2SO_4 with deionized distilled water and then titrating the solution with a standard NaOH solution to determine its normality.

Four different subbituminous coal particle sizes were used. Each size has a radius, r_0 , relating to the radius of the next larger sized particle by the relationship $r^2 = 10/r^2$. This distribution of sizes was used since, according to theory, the ion exchange rate should be proportional to $1/r^2$ if particle diffusion is rate determining (<u>19</u>). The four particle sizes used correspond to the following Tyler mesh sizes: -4 to +6, -14 to +20, -35 to +48, and -80 to +100 mesh, and to a mean particle radii of: 2.013, 0.502,

TABLE 2

TEST CONDITIONS

_	Particle Radius, mm	H ₂ SO ₄ Conc., N	Residence Time, minutes	Liquid/Solid Mass Ratio
	2.013	0.1070	1440 (24 hour),180,150,120,80 40,30,20,10,7,5	, 10/1
	0.502	0.1070	1440 (24 hour),150,80,40,30,20 10,5,2	0, 10/1
	0.178	0.1070	40,30,20,10,7,5	10/1
	0.082	0.1070	40,30,20,10,5,2	10/1
	2.013	0.1565	1440 (24 hour),150,120,80,40, 30,20,10,5,2	10/1
	0.502	0.1565	240,120,80,60,40,30,20, 10,5,2	10/1
	0.178	0.1565	40,30,20,10,5,2	10/1
	2.013	0.1959	1440 (24 hour),180,40,30,20, 10,5,2	10/1
	0.502	0.1959	240,80,40,30,20,10,5,2	10/1
	0.178	0.1959	60,40,30,20,10,5,2	10/1
•	0.502	0.1070	1440 (24 hour),240,60,30,20, 10,5,2	5/1
	0.502	0.1070	1440 (24 hour),60,30,20, 10,5,2	2/1
	0.502	0.1959	1440 (24 hour),60,30,20, 10,5,2	5/1

0.178, and 0.082 mm, respectively. Separation into the different particle sizes was accomplished by the use of a Cenco Meizer Sieve Shaker.

Runs using differing liquid to solid mass ratios were accomplished by altering both the H_2SO_4 solution (liquid) amount as well as the subbitiuminous coal (solid) amount. The liquid to solid mass ratios of 10/1, 5/1, and 2/1 were made by the following ratios of amount of H_2SO_4 solution to amount of as received coal: 60 g/6 g, 50 g/10 g, and 40 g/20 g, respectively.

4.3 ANALYSIS OF SAMPLES

Subbitiumious coal and liquid residues were analyzed using ASTM procedures (20). After each run was completed, a sample of the processed subbituminous coal was weighed into a crucible and dried for 2 hours at 100° C (212° F), thus determining its moisture content. Ash content for the processed coal sample was determined by placing the dried coal sample in in a muffle furnace, gradually raising the temperature to 750° C (1382° F), and then holding at that temperature for 2 hours.

The metal ion concentration of the ash was determined for Na, the ion of interest, as well as for K, Mg, Ca, and Al. This was done by first making a pellet from the ash, by combining approximately 0.1 g of ash with 0.6 g of LiBO_4 .

This mixture of ash and LiBO₄ was put into a graphite crucible and heated in a muffle furnace to 975^oC (1787^oF), forming the pellet upon cooling. The pellet was then dissolved in a mixture of 5 ml of concentrated HNO₃ diluted to 40 ml with distilled water. Having dissolved the pellet, the resulting solution was further diluted to 100 ml with distilled water. This final solution was analyzed for ion content by the use of an Atomic Absorption Spectrophotometer (AA), comparing the dissolved pellet solution to standard concentration solutions. A Perkin-Elmer model 303 Atomic Absorption Spectrophotometer equipped with a model DCR1 Concentration Readout was used.

The liquid residue was also analyzed for metal content by the use of the AA. However, in the analysis of the liquid residue, no preparation was required.

The results obtained from the AA are given in parts per million (ppm). The data for the liquid and solid residue was converted to percent ion removed for the subbituminous coal based on original as received coal analysis. After determining the closure for the run, the values were normalized for the percent ion removed. Sample calculations are shown in Appendix A, and the raw data for the runs is found in Appendix B. Graphs were drawn for the normalized percent ion removed data as a function of time.

Chapter V RESULTS AND DISCUSSION

5.1 RESULTS

Using the analysis obtained from the liquid residue, solid residue, and coal as received, the removal of Na, the ion of interest, as well as K, Mg, Ca, and Al by ion exchange was determined by the use of a computer program, written for a TI-59 calculator in an earlier work (21). The complete program as well as an example of a print-out of results are shown in Appendix A. The results determined for all ions studied are tabulated in Tables 32-44, Appendix C, for the 13 sets of runs as a function of time for varying particle size, initial H_2SO_4 concentration, and liquid to solid mass ratio. The normalized percent ion removed for all ions investigated is plotted as a function of time in Figures 2-14, showing the order of removal.

Figures 2-5 and the data in the corresponding Tables 6-9, 19-22 (Appendix B), and 32-35 (Appendix C) were obtained for a series of runs as a function of time at a constant initial H_2SO_4 concentration of 0.1070 N and a liquid to solid mass ratio of 10/1 for 4 particle sizes. Likewise,

- 24 -

FIGURE 2 - Cation Removal as a Function of Time Using 0.1070 N H₂SO₄ Solution, 2.013 mm Particle Radius (4-6 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 3 - Cation Removal as a Function of Time Using 0.1070 N H₂SO₄ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 4 - Cation Removal as a Function of Time Using 0.1070 N $\rm H_2SO_4$ Solution, 0.178 mm Particle Radius (35-48 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 5 - Cation Removal as a Function of Time Using 0.1070 N H₂SO₄ Solution, 0.082 mm Particle Radius (80-100 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 6 - Cation Removal as a Function of Time Using 0.1565 N $\rm H_2SO_4$ Solution, 2.013 mm Particle Radius (4-6 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 7 - Cation Removal as a Function of Time Using 0.1565 N $\rm H_2SO_4$ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 8 - Cation Removal as a Function of Time Using 0.1565 N H₂SO₄ Solution, 0.178 mm Particle Radius (35-48 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 9 - Cation Removal as a Function of Time Using 0.1959 N H₂SO₄ Solution, 2.013 mm Particle Radius (4-6 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 10 - Cation Removal as a Function of Time Using 0.1959 N H₂SO₄ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

 $\frac{\omega}{\omega}$

FIGURE 11 - Cation Removal as a Function of Time Using 0.1959 N $\rm H_2SO_4$ Solution, 0.178 mm Particle Radius (35-48 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 12 - Cation Removal as a Function of Time Using 0.1070 N $\rm H_2SO_4$ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 5/1 Liquid to Solid Mass Ratio

FIGURE 13 - Cation Removal as a Function of Time Using 0.1070 N $\rm H_2SO_4$ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 2/1 Liquid to Solid Mass Ratio

FIGURE 14 - Cation Removal as a Function of Time Using 0.1959 N $\rm H_2SO_4$ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 5/1 Liquid to Solid Mass Ratio

Figures 6-8 and Tables 10-12, 23-25 (Appendix B), and 36-38 (Appendix C) were prepared for a constant initial concentration of H_2SO_4 of 0.1565 N and a liquid to solid mass ratio of 10/1 for 3 particle sizes. In Figures 9-11, and Tables 13-15, 26-28 (Appendix B), and 39-41 (Appendix C), initial H_2SO_4 concentration was 0.1959 N and the liquid to solid mass ratio was 10/1 for 3 particle sizes. The liquid to solid mass ratio was altered in Figures 12-14 and Tables 16-18, 29-31 (Appendix B), and 42-44 (Appendix C), to 5/1, 2/1, and back to 5/1, respectively. A constant particle size of 0.502 mm was used and the initial H_2SO_4 concentration was 0.1070 N for Figures 12 and 13 and 0.1959 N for Figure 14.

The material balance closures for Na were quite good, ranging from about 95 % to 115 %. Of the remaining 4 ions, K was by far the most erratic. Most closures for Mg, Ca, and Al ranged from 85 % to 100 %, while K closures ranged from 50 % up to 120 %. The scatter in the closures for K analysis may be attributed to the trace amount of K present in the subbituminous coal. With the low ash coal used, remembering the heterogeneous character of coal, very minute fluctuations in K amount could throw the closure off by substantial amounts. Additionally, some blame must go also to inaccuracies of the atomic absorption (AA) analysis.

5.2 <u>INFLUENCE OF PARTICLE SIZE, INITIAL SULFURIC ACID</u> CONCENTRATION, AND RESIDENCE TIME

5.2.1 Particle Size

The effect of particle size on the removal of Na is clearly illustrated by Figure 15; a plot of Na removed as a function of time for the 4 particle sizes investigated, at a commmon initial concentration of H_2SO_4 of 0.1070 N and liquid to solid mass ratio of 10/1. To give the graph a common basis for convergence, the value for the amount of Na removed at equilibrium was assumed to be 95 % for all 4 particle sizes used. The value 95 % is an average value over all the runs for the amount of Na removed at equilibrium. Though the equilibrium value for Na removal should be a constant value for all particle sizes of the same coal, experimental error caused a scatter in this analysis. The equilibrium values for Na removal for all the runs, which can be found in Tables 32-44, ranged from 92 % to 97 %.

It is evident from Figure 15 that there is an inversly proportional relationship between particle size and Na removal, i.e., decreasing particle size increases the rate of Na removal. The observed relationship between particle size and Na removal was found to be significant by statistical analysis described in this section.

FIGURE 15 - Sodium Removal as a Function of Time Showing the Effect Particle Size Has on Sodium Removal Using 0.1070 N H₂SO₄ Solution and 10/1 Liquid to Solid Mass Ratio

5.2.2 Initial Sulfuric Acid Concentrtion

Figure 16, a plot of Na removed as a function of time for the 3 initial H_2SO_4 concentrations used, at a common particle size of 0.502 mm and liquid to solid mass ratio of 10/1, shows the effect initial H_2SO_4 concentration has upon Na removal. A value of 95 % Na removed at equilibrium was also used in this case. The graphs for the 3 varying initial H_2SO_4 solution concentrations show close agreement. As shown by statistical analysis later in the section, there is no significant difference between the curves for the 3 concentrations of 0.1070, 0.1565, and 0.1959 N H_2SO_4 .

5.2.3 Residence Time

It is evident from Figures 2-14 that Na removal is a function of time. The removal of Na increases with time until an equilibrium value is reached.

FIGURE 16 - Sodium Removal as a Function of Time Showing the Effect Initial H₂SO₄ Concentration Has on Sodium Removal Using 0.502 mm Particle Radius (14-20 Mesh Size) and 10/1 Liquid to Solid Mass Ratio

5.2.4 Statistical Analysis

A 3-way test of variance was completed to determine statistically the significance of the 3 parameters of particle size, initial concentration of H_2SO_4 solution, and residence time on Na removal. Statistical results from this analysis are found in an analysis of variance (ANOVA) table, Table 3, and the sample calculations for the ANOVA table are located in Appendix D.

In Table 3, the sum of squares and the mean square are simply the partitioning of the variablity of experimental data into the various sources of error. In this investigation, all 3 parameters were assumed to be fixed level (Model 1) errors. This implies that the statistical analysis is only concerned with the specific levels used for the 3 parameters. In using fixed level (Model 1) errors, the variablity of the experimental values partitioned to each parameter was separately compared with the variability attributed to experimental "slop" by the use of an F test, to determine if there was a significant difference between the variablity associated with the parameter compared to the variablity associated with experimental error (22).

In the working equation and both null and alternate hypothesis (H_0 and H_a respectively) used in Table 3, the symbols A, B, and C represent the error associated with the parameters of time, particle size, and initial H_2SO_4

TABLE 3

ANOVA TABLE

Working Equation: $X_{ijk} = \mu + A_i + B_j + C_k + \varepsilon$ Null Hypothesis $H : A_i = B_i = C_k = 0$ Alternate Hypothesis $H_a^i : A_i^j \neq 0$ or $B_j \neq 0$ or $C_k \neq 0$

Source	D.F.	Sum of Squares	Mean Square	Estimated Mean Square	Fcalc	F ¹	
Mean	1	193,874.3	-	_	-	-	44
Time	4	2409.2	602.3	σ^2 + (9/4)* ΣA_i^2	24.02	3.19	
Particle Size	2	30,670.2	15,335.1	σ^2 + (15/2)* ΣB_{j}^2	611.70	4.11	
H ₂ SO ₄ Concentration	2	102.0	51.0	$\sigma^2 + (15/2) * \Sigma C_k^2$	2.03	4.11	
Error	36	902.5	25.1	σ2	-	-	
Total	45	227,958.2	-	-	-	-	

D.F. = Degrees of Freedom Reference (22) concentration, respectively. The null hypothesis, H_0 , states that there is no significant effect related with any of the parameters studied, while conversly the alternate hypothesis, H_a , states that there is at least one significant effect among the parameters. A value for the Type 1 error, probability of rejecting the null hypothesis when it is true, was chosen to be the commonly used value of 5 %. A F value greater than 3.19 for the variable (source) of time and 4.11 for the variables (sources) of particle size and initial H_2SO_4 concentration indicated that there was a significant influence for that parameter (22).

From the F-test found in the ANOVA table, it was determined that residence time and particle size have a significant effect on Na removal at a 95 % confidence level. Also, initial H_2SO_4 concentration was found to have no significant effect over the concentration range investigated. From the values for the mean square determined for the ANOVA table, particle size was found to have a greater influence on Na removal than residence time as particle size showed a greater variability in experimental values.

5.2.5 Rate Controlling Step

The assumption that particle diffusion was the rate controlling step was supported by all the above findings. The determination that particle size is inversly proportional to the removal of Na supports the assumption of particle diffusion as rate controlling since with a shorter diffusion path (smaller particle size), the rate of diffusion and thus Na removal should increase. Likewise, increased residence time allows a longer period for ion exchange to occur, increasing Na removal. The fact that initial H2SO4 concentration had no significant effect on Na removal is strong evidence that particle diffusion, and not film diffusion, was the rate controlling mechanism for the ion exchange. If film diffusion had been rate controlling, initial concentration of H₂SO₄ solution should have had a directly proportional relationship on the removal of Na (19). Since initial concentration of H2SO4 solution showed no significant effect, the rate controlling step must have been particle diffusion. By setting the agitation rate at a high rate such that the film layer clinging to the coal particle was very thin, particle diffusion as the rate controlling step was expected.

5.3 <u>INFLUENCE OF LIQUID TO SOLID MASS RATIO</u> 5.3.1 Liquid to Solid Mass Ratio

The effect of liquid to solid mass ratio upon removal of Na is shown in Figure 17, which is a plot of Na removed as a function of time for the 4 mass ratios used, at a common particle radius of 0.502 mm and H₂SO₄ concentrations of 0.1070 N and 0.1959 N. Once again, to achieve common convergence a value of 95 % Na removed at equilibrium was assumed. The curves for the 3 liquid to solid mass ratios (10/1, 5/1, and 2/1) show no significant difference between mass ratios as long as there was sufficient H-ion content to complete the exchange. This observation was supported by statistical means later in this section. The graphs for the 10/1 and 5/1 mass ratios are quite similiar, but the 2/1mass ratio illustrates the effect of not having sufficient H-ion content present. Though the graph for the 2/1 mass ratio is initially similiar to the graphs for the 10/1 and 5/1 mass ratios, it falls far short of the 95 % Na removed at equilibrium, as the H-ion (B counter-ion) was used up before the usual equilibrium value was reached. An additional set of runs was made at a constant ratio of equivalents of Na to equivalents of H-ion in the exchange medium of 0.18, which is the same as the 10/1 mass ratio and 0.1070 N H2SO4 concentration. This data set was done at a 5/1 mass ratio and 0.1959 N H_2SO_4 concentration. The graphs for these two

FIGURE 17 - Sodium Removal as a Function of Time Showing the Effect Liquid to Solid Mass Ratio Has on Sodium Removal Using 0.502 mm Particle Radius (14-20 Mesh Size) and 0.1070 N H₂SO₄ Solution

runs at constant equivalent ratio show no significant difference from the graphs of the other mass ratios in which there was sufficient H-ion present to complete the exchange, and this observation is verified by the following statistical analysis.

5.3.2 Statistical Analysis

A "student t-test" was done for the data obtained for the liquid to solid mass ratios (10/1, 5/1, and 5/1 with an equivalents ratio of 0.18) that had sufficient H-ions present to complete the exchange. The sample calculations are shown in Appendix D. It was determined that no significant difference existed, at a 95 % significance level, between the data obtained for the mass ratios of 10/1, 5/1, and 5/1 (with the similar ratio of equivalents of Na-ion to equivalents of initial H-ion as the 10/1 mass ratio and 0.1070 N H_2SO_4 concentration).

5.3.3 Rate Controlling Step

The results for varying liquid to solid mass ratio also confirm that particle diffusion was rate controlling. The mechanism for particle diffusion should be independent of H-ion content, and that is what was found in this investigation.

5.4 THE THEORETICAL INTEGRATED EQUATION

The Vermuelen's approximation, Equation 8, was used in conjuction with Equation 9 to predict the kinetic response of the ion exchange of Na from subbituminous coal. Figures 18-30 are plots of Na removal as a function of time for both the experimental work and predictions from Vermuelen's approximation. The 13 figures correspond to the 13 sets of timed runs in which the parameters of particle size, initial H2SO4 concentration, and liquid to solid mass ratio were varied. A computer program, listed in Appendix A, was used to determine the predicted values of Na removal from the Vermuelen's approximation. The most important parameter in Vermuelen's approximation is the H-ion:Na-ion self-diffusion coefficient in the exchange particle. Equation 10 was used, knowing the half time of the ion exchange, to determine the H-ion:Na-ion self-diffusion coefficient. Values for the Hion:Na-ion self-diffusion coefficient are compiled in Table 4 for the various sets of runs. Equations 8, 9, and 10 again are:

$$U(t) = \left[1 - \exp\left(-\frac{\overline{D}t\pi^2}{-\frac{\overline{D}}{r^2}}\right)\right]^{1/2}$$
(8)

S Ion Removed = U(t) * X * (100 S) (9)

$$t_{1/2} = 0.030 \frac{r^2}{\overline{D}}$$
 (10)

FIGURE 18 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1070 N H_2SO_4 Solution, 2.013 mm Particle Radius (4-6 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

5]

FIGURE 19 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1070 N $\rm H_2SO_4$ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 20 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1070 N $\rm H_2SO_4$ Solution, 0.178 mm Particle Radius (35-48 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 21 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1070 N H₂SO₄ Solution, 0.082 mm Particle Radius (80-100 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 22 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1565 N H₂SO₄ Solution, 2.013 mm Particle Radius (4-6 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 23 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1565 N H₂SO₄ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 24 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1565 N H_2SO_4 Solution, 0.178 mm Particle Radius (35-48 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 25 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1959 N $\rm H_2SO_4$ Solution, 2.013 mm Particle Radius (4-6 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 26 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1959 N $\rm H_2SO_4$ Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 27 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1959 N H₂SO₄ Solution, 0.178 mm Particle Radius (35-48 Mesh Size), and 10/1 Liquid to Solid Mass Ratio

FIGURE 28 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1070 N H_2SO_4 Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 5/1 Liquid to Solid Mass Ratio

FIGURE 29 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1070 N H_2SO_4 Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 2/1 Liquid to Solid Mass Ratio

FIGURE 30 - Experimental and Predicted Sodium Removal as a Function of Time Using 0.1959 N H_2SO_4 Solution, 0.502 mm Particle Radius (14-20 Mesh Size), and 5/1 Liquid to Solid Mass Ratio

TABLE 4

SELF DIFFUSION COEFFICIENTS

Particle Radius,	^H 2 ^{SO} 4 Conc.,	Liquid/Solid Mass Ratio	Self-Diffusion m	n_Coefficient, m ² /min
mm	N		Actual	Average
2.013	0.1070	10/1	0.0014	
0.502	0.1070	10/1	0.0029	0.0010
0.178	0.1070	10/1	0.0012	0.0018
0.082	0.1070	10/1	0.0004	
2.013	0.1565	10/1	0.0016	
0.502	0.1565	10/1	0.0021	
0.178	0.1565	10/1	0.0014	0.0017
2.013	0.1959	10/1	0.0024	
0.502	0.1959	10/1	0.0019	
0.178	0.1959	10/1	0.0010	0.0018
0.502	0.1070	5/1	0.0020	
0.502	0.1959	5/1	0.0026	0.0023
0.502	0.1070	2/1	0.0036	

Half time for the ion exchange was found by using multiple linear regression on the experimental data and solving for the time in which half of the equilibrium amount of Na removal is achieved. Again a computer program was used for the determination of both the half time of the ion exchange and the H-ion:Na-ion self-diffusion coefficient in the coal particle. This program is also shown in Appendix A.

The self-diffusion coefficient for H-ion:Na-ion ion exchange in the coal particle should be constant over all particle sizes of coal at a common initial H_2SO_4 concentration and liquid to solid mass ratio. Using this idea, the individual H-ion:Na-ion self-diffusion coefficients found for each particle size at a common H_2SO_4 solution concentration and mass ratio, were averaged and used to get predicted values for percent Na removed from the Vermuelen's approximation. Further, it was found that the averaged values for the self diffusion coefficient were also constant over the 3 different initial H_2SO_4 concentrations. The constant value for the H-ion:Na-ion self-diffusion coefficient was found to be $0.0018 \text{ mm}^2/\text{min}$ (3.0 x $10^{-7} \text{ cm}^2/\text{sec}$).

Along with the experimental values in Figures 18-30, graphs were drawn for both Vermuelen's approximation with the actual H-ion:Na-ion self-diffusion coefficient calculated for that specific set of runs, as well as with the over-

all average value for the H-ion:Na-ion self-diffusion coefficient. In some cases, such as in Figures 18 and 19, the overall average value for the H-ion:Na-ion self-diffusion coefficient had a correcting effect on the predicted values from the Vermuelen's approximation as compared to using the H-ion:Na-ion self-diffusion coefficient for that specific series of runs. The overall average value for the H-ion:Naion self-diffusion coefficient helped little to improve the accuracy of the predicted values for the data presented in Figures 25 and 26.

Taken as a whole, with the assumptions made for the derivation of Vermuelen's approximation as well as the use of coal (the crude, nonideal ion exchanger), the results obtained for the prediction of the kinetic response of the ion exchange of Na were quite good. Though not an exact equation, Vermuelen's approximation is a good representation of what was found experimentally for the ion exchange of Na, and the predicted information is readily determined. With the heterogenous nature of coal and the inherent experimental error, averaging of specific H-ion:Na-ion self-diffusion coefficients should be done to help improve the accuracy of the theoretical equation used.

5.5 OTHER IONS

Four other ions, K, Mg, Ca, and Al, were investigated for their removal from coal by ion exchange. By the observation of Figures 2-14, the order of removal was Na> K> Mg> Ca> Al. This is similar to the order predicted by theory where a smaller ion with a lower charge has a higher affinity to displace a larger ion with a higher charge (23).

Chapter VI CONCLUSIONS

- Subbituminous coal can have approximately 95 % of its initial Na content removed by ion exchange with dilute aqueous H₂SO₄ on a batch, experimental basis at equilibrium.
- 2. The ion exchange of Na from subbituminous coal, using aqueous H_2SO_4 as the exchange medium, has particle diffusion as the rate controlling step, provided the agitation rate is set such that the clinging film layer about the coal particle is minimal.
- 3. The amount of H-ion, as controlled by the liquid to solid mass ratio, has no significant effect on the rate of Na removed, provided sufficient H-ion is present to complete the ion exchange within the range studied.
- Initial H₂SO₄ concentration has no significant effect on the rate of Na removal over the range of concentration studied.
- 5. The H-ion:Na-ion self-diffusion coefficient was found to be nearly constant over the concentration range of

- 68 -

 H_2SO_4 solution used, at a value of 0.0018 mm²/min (3.0 x 10^{-7} cm²/ sec).

- 6. Particle size was found to be the major factor in the removal of Na over the range of particle sizes studied.
- Particle size had the most significant effect on Na removal by ion exchange, with residence time following in order.
- 8. Vermuelen's approximation is a good representation for predicting the ion exchange of Na from subbituminous coal on the batch basis, and the equation can be used to predict the kinetic response of the ion exchange. The self-diffusion coefficient used for Vermuelen's approximation should be an average value over all the particle sizes investigated to improve the accuracy of the theoretical equation.

Appendix A

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS

CAR = Coal as Received M = Moisture DB = Dry Basis MF = Moisture Free Coal MAF = Moisture, Ash Free Coal ppm = Part per Million A) Determine weight of cation from AA analysis μ g cation = ppm 100 ml solution % Ash DB Ash in Pellet, g (100 - % Ash) g MAF g MAF $\frac{\mu g \text{ Na}}{g \text{ MAF}} = 65.5 \text{ ppm} \frac{100 \text{ ml solution}}{0.0997 \text{ g Ash}} \frac{3.82 \text{ % Ash}}{(100 - 3.82 \text{ %}) \text{ g MAF}}$ $= 2610 \mu g Na$ g MAF $\frac{g \text{ cation}}{g \text{ CAR}} = \frac{\mu g \text{ cation}}{g \text{ MAF}} \frac{100 - \text{\% Ash DB}}{100 \text{ g MF}} \frac{100 - \text{\% M}}{100 \text{ g CAR}} \frac{10^{-6} \text{ g}}{\text{ g}}$ $\frac{g \text{ Na}}{g \text{ CAR}} = \frac{2610}{g \text{ MAF}} \frac{\mu g \text{ Na}}{100 \text{ g MF}} \frac{100 - 3.82 \text{ % Ash}}{100 \text{ g CAR}} \frac{100 - 24.0 \text{ % M}}{100 \text{ g CAR}} \frac{10^{-6} \text{ g}}{\text{ g}}$ = 1.93 x $10^{-3} \frac{g Na}{g CAR}$ B) Determine % Oxide of the cation in the ash $\text{\% Oxide} = \frac{\mu \text{g cation}}{\text{g MAF}} \frac{100 - \text{\% Ash DB}}{\text{\% Ash DB}} (\text{K})(10^{-4})$ where K 1.35 Na 1.20 K Mg 1.66 1.40 Ca Al 1.43 $\frac{100 - 3.82 \text{ % Ash}}{3.82 \text{ % Ash}}$ (1.35)(10⁻⁴)

= 8.9 % Na₂0

MATERIAL BALANCE CLOSURE PROGRAM

The preceeding will demonstrate how to use the TI-59 program and also list out the complete program.

Input

	Item	Storage Location
Weight ash in	pellet, grams	09
Weight coal us	sed, grams	10
Volume initial	solution recovered, mls	11
Volume of rins	se recovered, mls	12
% H ₂ O in coal	as received (CAR)	13
% ash in coal	as received	14
% ash in solid	l sample	15
Weight Na in (CAR sample, grams	16
Weight K in CA	AR sample, grams	17
Weight Ca in (CAR sample, grams	18
Weight Mg in (CAR sample, grams	19
Weight Al in C	CAR sample, grams	20
Weight Fe in (CAR sample, grams	21
Concentration	Na from solid sample, ppm	22
Concentration	K from solid sample, ppm	23
Concentration	Ca from solid sample, ppm	24
Concentration	Mg from solid sample, ppm	25
Concentration	Al from solid sample, ppm	26
Concentration	Fe from solid sample, ppm	27
Concentration	Na from liquid sample, ppm	28
Concentration	K from liquid sample, ppm	29
Concentration	Ca from liquid sample, ppm	30
Concentration	Mg from liquid sample, ppm	31
Concentration	Al from liquid sample, ppm	32
Concentration	Fe from liquid sample, ppm	33
Concentration	Na from rinse solution, pp	m 34
Concentration	K from rinse solution, ppm	35
Concentration	Ca from rinse solution, pp	m. 36
Concentration	Mg from rinse solution, pp	m 37
Concentration	Al from rinse solution, pp	m 38
Concentration	Fe from rinse solution, pp	m 39

Output

<pre>% Ion Remaining :</pre>	in Coal	7.1172066	01
% Ion Removed by	Solution	3.3957265	01
% Ion Removed by	Rinse	1.2820513	00
Material Balance	Closure	1.0641138	02
Normalized % Ion	Remaining in Coal	6.6883885	01
Normalized % Ion	Removed by Solution	3.1911309	01
Normalized % Ion	Removed by Rinse	1.2048065	00

which means

% Closure = 106.4 %
% Na Removed = 31.9 % + 1.2 % = 33.1 %

000 43 RCL 051 94 +/- 001 15 15 052 95 = 002 65 X 053 42 STO	101 00 0 102 00 0 103 95 = 104 42 STO 105 05 05
00353(054070700401105543RCL0050000561212006000005765X00775-05801100843RCL05982EE009131306006601054)06194 $+/-$ 01165X06295=01253(06342STO013011064080801400006598ADV01500006603301675-06701101743RCL068011018141406903301954)07069OP02065X071020202143RCL07269OP0221010073050502365X07498ADV02401107543RCL02855 \div 079222202953(08055 $‡$ 03043RCL08143RCL0310909082161603265X088	106 99 PRT 107 43 RCL 108 08 08 109 65 X 110 43 RCL 111 34 34 112 55 \div 113 43 RCL 114 16 16 115 65 X 116 01 1 117 00 0 118 00 0 119 95 = 120 42 STO 121 06 06 122 99 PRT 123 43 RCL 124 04 04 125 85 \div 126 43 RCL 127 05 05 128 85 \div 129 43 RCL 130 06 06 131 95 = 132 42 STO 133 03 03 134 99 PRT 135 98 ADV 136 01 1 137 00 0 138 00 0 139 55 \div 140 53 RCL 141 03 03 142 95 = 143 42 STO 144 02 02 145 65 X 146 43 RCL 147 04 04

050	06	6							
151	02	02	201	99	PRT		251	99	PRT
152	65	x	202	42	STO		252	43	RCT.
153	43	RCT.	203	05	05		253	02	02
154	05	OF	205	50	DOJ		255	CE	102
154	05	05	204	53	RCL		254	65	X
155	95	=	205	08	08		255	43	RCL
156	99	PRT	206	65	X		256	06	06
157	43	RCT.	207	43	RCT.		257	95	=
158	02	02	200	25	25		250	00	DDM
150	CE	102	200	55			250	99	PRI
159	65	X	209	55	·		259	98	ADV
160	43	RCL	210	43	RCL		260	01	1
161	06	06	211	17	17		261	05	5
162	95	=	212	65	X		262	01	1
163	99	PRT	213	01	1		263	03	3
164	98	ADV	214	00	õ		264	69	OP
165	02	2	215	00	0		204	02	02
105	02	4	215	00	0		205	0Z	02
166	06	6	216	95	=		266	69	OP
167	69	OP	217	99	PRT		267	05	05
168	02	02	218	42	STO		268	98	ADV
169	69	OP	219	06	06		269	43	RCL.
170	05	05	220	85			270	01	01
171	00	ADU	220	12	DOT		270	CE	UI
1/1	90	ADV	221	43	RCL		2/1	65	X
172	43	RCL	222	05	05		272	43	RCL
173	01	01	223	85	*		273	24	24
174	65	X	224	43	RCL		274	55	÷
175	43	RCL	225	04	04		275	43	RCL.
176	23	23	226	05	-		276	10	10
177	55	-	220	00	-		270	CE	10
1//	55		221	99	PRT		211	65	X
1/8	43	RCL	228	42	STO		278	01	1
179	17	17	229	03	03		279	00	0
180	65	X	230	98	ADV		280	00	0
181	01	1	231	01	1		281	95	==
182	00	0	232	00	õ		282	12	STO
102	00	0	222	00	0		202	14	510
103	00	0	233	00	0		283	04	04
184	95	=	234	55	*		284	99	PRT
185	99	PRT	235	43	RCL		285	43	RCL
186	42	STO	236	03	03		286	07	07
187	04	04	237	95	=		287	65	x
188	43	RCT.	238	42	STO		288	43	PCT.
100	07	07	220	02	02		200	20	20
109	66	07	239	02	02		209	50	50
190	65	X	240	65	х		290	55	•
191	43	RCL	241	43	RCL		291	43	RCL
192	29	29	242	04	04		292	18	18
193	55		243	95	=		293	65	x
194	43	RCT.	244	99	PRT		294	01	1
105	17	17	2/5	13	PCT		205	00	õ
100	CE	1/	240	40	RCL		295	00	0
190	00	X	246	02	02		296	00	0
197	01	1	247	65	Х		297	95	=
198	00	0	248	43	RCL		298	42	STO
199	00	0	249	05	05		299	05	05
200	95	==	250	95	=		300	99	PRT
			250				000		

201	12	DOT	251	05		401		
301	43	RCL	351	95	=	401	43	RCL
302	08	08	352	99	PRT	402	19	19
303	65	X	353	98	ADV	403	65	X
304	43	RCL	354	03	3	404	01	1
305	36	36	355	00	0	405	00	0
306	55	•	356	02	2	406	00	0
307	43	RCL	357	02	2	407	95	=
308	18	18	358	69	OP	408	42	STO
309	65	x	359	02	02	409	06	06
310	01	1	360	69	OP	410	00	ידימים
311	00	0	261	05	OF	410	05	PRI
212	00	0	201	00	05	411	40	DOT
312	00	0	362	98	ADV	412	43	RCL
313	95	=	363	43	RCL	413	05	05
314	42	STO	364	01	01	414	85	÷
315	06	06	365	65	Х	415	43	RCL
316	99	PRT	366	43	RCL	416	04	04
317	85	+	367	25	25	417	95	=
318	43	RCL	368	55	•	418	99	PRT
319	05	05	369	43	RCL	419	98	ADV
320	85	+	370	19	19	420	35	1/x
321	43	RCT.	371	65	x	421	65	v
322	04	04	372	01	1	421	01	1
222	05	-	372	01	1	422	01	1
323	95	-	373	00	0	423	00	0
324	99	PRT	3/4	00	0	424	00	0
325	35	1/X	375	95	=	425	95	=
326	65	X	376	42	STO	426	42	STO
327	01	1	377	04	04	427	02	02
328	00	0	378	99	PRT	428	65	х
329	00	0	379	43	RCL	429	43	RCL
330	95	==	380	07	07	430	04	04
331	42	STO	381	65	x	431	95	=
332	02	02	382	43	RCT.	432	99	PRT
333	98	ADV	383	31	31	433	43	PCT.
334	65	X	384	55	÷	434	02	02
335	43	PCT	385	13	PCT	135	65	v
335	04	O1	206	10	10	435	42	DOI
330	04	04	200	19	19	430	43	RCL
337	95	=	387	65	X	437	05	05
338	99	PRT	388	01	1	438	95	=
339	43	RCL	389	00	0	439	99	PRT
340	02	02	390	00	0	440	43	RCL
341	65	Х	391	95	=	441	02	02
342	43	RCL	392	42	STO	442	65	X
343	05	05	393	05	05	443	43	RCL
344	95	=	394	99	PRT	444	06	06
345	99	PRT	395	43	RCL	445	95	=
346	43	RCL	396	08	08	446	99	PRT
347	02	02	397	65	x	447	98	ADV
348	65	X	398	43	RCT	449	01	1
340	43	RCT	300	37	27	110	03	3
350	06	06	100	57		150	03	2
220	00	00	400	22	•	450	02	2

451	07	07	501	95	=		551	43	RCL
452	69	OP	502	42	STO		552	01	01
453	02	02	503	06	06		553	65	х
454	69	OP	504	99	PRT		554	43	RCL
455	05	05	505	85	+		555	27	27
456	98	ADV	506	43	RCL		556	55	÷
457	43	RCL	507	05	05		557	43	RCL
458	01	01	508	85	+		558	21	21
459	65	х	509	43	RCL		559	65	X
460	43	RCL	510	04	04		560	01	1
461	26	26	511	95	=		561	00	0
462	55	*	512	99	PRT		562	00	0
463	43	RCL	513	98	ADV		563	95	=
464	20	20	514	35	1/X		564	42	STO
465	65	х	515	65	X		565	04	04
466	01	1	516	01	1		566	99	PRT
467	00	0	517	00	0		567	43	RCL
468	00	0	518	00	0		568	07	07
469	95	=	519	95	=		569	65	х
470	42	STO	520	42	STO		570	43	RCL
471	04	04	521	02	02		571	33	33
472	99	PRT	522	65	x		572	55	*
473	43	RCL	523	43	RCL		573	43	RCL
474	07	07	524	04	04		574	21	21
475	65	х	525	95	=		575	65	х
476	43	RCL	526	99	PRT		576	01	1
477	32	32	527	43	RCL		577	00	0
478	55	•	528	02	02		578	00	0
479	43	RCL	529	65	х		579	95	=
480	20	20	530	43	RCL		580	42	STO
481	65	X	531	05	05		581	05	05
482	01	1	532	95	=		582	99	PRT
483	00	0	533	99	PRT		583	43	RCL
484	00	0	534	43	RCL		584	08	08
485	95	=	535	02	02		585	65	x
486	42	STO	536	65	х		586	43	RCL
487	05	05	537	43	RCL		587	39	39
488	99	PRT	538	06	06		588	55	•
489	43	RCL	539	95	==		589	43	RCL
490	08	08	540	99	PRT		590	21	21
491	65	x	541	98	ADV		591	65	х
492	43	RCL	542	02	2		592	01	1
493	38	38	543	01	1		593	00	0
494	55	*	544	01	1		594	00	0
495	43	RCL	545	07	7		595	95	=
496	20	20	546	69	OP		596	42	STO
497	65	х	547	02	02		597	06	06
498	01	1	548	69	OP		598	99	PRT
499	00	0	549	05	05		599	85	
500	00	0	550	98	ADV		600	43	RCL

601	05	05
602	85	
603	43	RCL
604	04	04
605	95	=
606	99	PRT
607	98	ADV
608	35	1/X
609	65	x
610	01	1
611	00	0
612	00	0
613	95	=
614	42	STO
615	02	02
616	65	x
617	43	RCL
618	04	04
619	95	=
620	99	PRT
621	43	RCL
622	02	02
623	65	x
624	43	RCL
625	05	05
626	95	=
627	99	PRT
62.8	43	RCL
629	02	02
630	65	x
631	43	RCT.
632	06	06
633	95	=
634	99	PRT
635	98	ADV
636	91	R/S
637	00	0
638	00	õ
639	00	õ

MULTIPLE LINEAR REGRESSION PROGRAM

The following will both show how to use the multiple linear regression program and list out the complete program. The regression program fits experimental data into the form of the following equation.

(% Na Removed) = Bzero + exp(Bone*Time) + Time^{Btwo}

The interactive program will run as follows:

Input

THE NUMBER OF RUNS IN THIS SERIES OF RUNS IS, REAL NUMBER? ? THE TIME FOR THIS RUN IS, MIN.? ? THE PERCENT REMOVED IN THIS TIME IS? ? THE PERCENT NA REMOVED AT EQUILIBRIUM IS? ? THE MEAN RADIUS FOR THE MESH SIZE IS, MM? ?

Output

(Bone) (Btwo) (Bzero) -0.005958 0.341283 3.396585

TIME	<pre>% REMOVED</pre>
60.0	84.47
40.0	82.86
30.0	79.73
20.0	73.69
10.0	61.73
5.0	50.20
2.0	37.38

THE CORRELATION INDEX, R**2, IS 0.997599 THE T HALF VALUE IS 3.8 MIN.

THE DIFFUSIVITY VALUE IS 0.0036 MM**2/MIN

COMPLETE LISTING OF THE FORTRAN 77 INTERACTIVE MULTIPLE LINEAR REGRESSION PROGRAM 1* THIS IS A INTERACTIVE LINEAR REGRESSION PROGRAM 2* 10 DIMENSION X(20), Y(20), YLN(20), TV(10), XLN(20) 15* 20 TV(1) = 60.030 TV(2) = 40.0TV(3) = 30.040 50 TV(4) = 20.060 TV(5) = 10.0TV(6) = 5.070 80 TV(7) = 2.085* 90 WRITE(6,1000) 100 READ*, N 105* 110 DO 5 I = 1, N120 WRITE(6,1010) 130 READ(5, 1011) X(I)140 WRITE(6,1020) 150 READ(5, 1011) Y(I)160 5 CONTINUE 165* 170 WRITE(6,1030) 180 READ(5,1011) YEQUIL 190 WRITE(6,1040) 200 READ(5,1011) RAD 205* 210 DO 20 IA = 1, N220 YLN(IA) = ALOG(Y(IA))230 XLN(IA) = ALOG(X(IA))240 20 CONTINUE 245* 250* MAIN CALCULATIONS 255* 260 XTOT = 0.0270 XBTOT = 0.0280 YTOT = 0.0285* 290 DO 30 IB = 1,N300 YTOT = YTOT + YLN(IB)310 XBTOT = XBTOT + XLN(IB)320 XTOT = XTOT + X(IB)330 30 CONTINUE 330* 340 XAVE = XTOT / FLOAT(N)350 XBAVE = XBTOT / FLOAT(N)360 YAVE = YTOT / FLOAT(N)365* 370 SXY = 0.0380 SBY = 0.0390 SBB = 0.0

```
400
      SXB = 0.0
410
      SXX = 0.0
420
      SYY = 0.0
425*
430 DO 40 IC = 1, N
440
      SXY = (X(IC) - XAVE) * (YLN(IC) - YAVE) + SXY
450
      SXB = (X(IC) - XAVE) * (XLN(IC) - XBAVE) + SXB
      SBY = (XLN(IC) - XBAVE) * (YLN(IC) - YAVE) + SBY
460
470
      SBB = (XLN(IC) - XBAVE) * (XLN(IC) - XBAVE) + SBY
480
      SXX = (X(IC) - XAVE) * (X(IC) - XAVE) + SXX
490
      SYY = (YLN(IC) - YAVE) * (YLN(IC) - YAVE) + SYY
500 40 CONTINUE
505*
510 BONE = (SBB*SXY-SXB*SBY)/(SXX*SBB-(SXB**2.0))
520 BTWO = (SXX*SBY-SXB*SXY)/(SXX*SBB-(SXB**2.0))
530 BZERO = YAVE - BONE*XAVE - BTWO*XBAVE
535*
540
      WRITE(6,1800) BONE, BTWO, BZERO
550
      WRITE(6,1800)
555*
560 \text{ DO } 100 \text{ JA} = 1,7
570
      AVAL = BZERO + BONE*(TV(JA)) + BTWO*(ALOG(TV(JA)))
580
      YPRINT = EXP(AVAL)
590
      WRITE(6,1900) YPRINT
600 100 CONTINUE
605*
610
      RSQUAR = (BONE*SXY + BTWO*SBY)/SYY
620
      WRITE(6,2030) RSOUAR
630
      YHALF = YEQUIL/2.0
640
    YVAL = ALOG(YHALF)
650
      THALF = 50.0
660 140 AVAL = BZERO + BONE*THALF + BTWO*(ALOG(THALF))
670 ADIFF = AVAL - YVAL
680 IF(ADIFF .GT. .0001) GO TO 150
690 IF(ADIFF .LT. (-.0001)) GO TO 150
700
         WRITE(6,2010) THALF
710 GO TO 160
715*
720 150 THALF = THALF - ADIFF*THALF
730 GO TO 140
735*
740 160 D = (.03*RAD**2.0)/THALF
    WRITE(6,2020) D
750
755*
760* THIS IS THE FORMAT SECTION
765*
770 1000 FORMAT(/2X, 'THE NUMBER OF RUNS IN THIS SERIES
IS, REAL')
780 1010 FORMAT(/2X, 'THE TIME FOR THIS RUN IS, MIN.')
790 1011 FORMAT(F15.6)
800 1020 FORMAT(/2X, 'THE PERCENT REMOVED IN THIS TIME IS')
810 1030 FORMAT(/2X, 'THE PERCENT NA REMOVED AT EQUILIBRIUM
IS')
```

820 1040 FORMAT(/2X, 'THE MEAN RADIUS FOR THIS MESH SIZE IS, MM') 830 1800 FORMAT(/2X, ' TIME %REMOVED') 840 1900 FORMAT(/2X, F10.1, ',F10.5) 850 2010 FORMAT(/2X, 'THE T HALF VALUE IS ',F10.1, ' MIN.') 860 2020 FORMAT(/2X'THE DIFFUSIVITY VALUE IS ',F10.4,' MM**2/MIN') 870 2030 FORMAT(/2X, 'THE CORRELATION INDEX, R**2, IS ',F10.6) 880 2040 FORMAT(/2X,F13.6,' ',F13.6,' ',F13.6) 890 STOP 900 END

VERMUELEN'S APPROXIMATION PROGRAM

The precceeding shall show how to use the Vermuelen's approximation program as well as listing the complete program.

The interactive program runs as follows:

Input

THE VALUE FOR THE D VALUE IS, MM**2/MIN ? THE VALUE FOR THE MEAN RADIUS IS, MM ? THE EQUILIBRIUM VALUE FOR THE % NA REMOVED IS ?

Output

RESIDENCE	FRACTION	OF EQUILIBRIUM	<pre>% CATION REMOVE</pre>	D
60.0		0.99989	67.29291	
40.0		0.99823	67.18085	
30.0		0.99272	66.81007	
20.0		0.96980	65.26781	
10.0		0.86955	58.52060	
5.0		0.71144	47.88014	
2.0		0.49587	33.37193	

COMPLETE LISTING OF THE FORTRAN 77 INTERACTIVE VERMUELEN'S APPROXIMATION PROGRAM 1* THIS PROGRAM IS A ESTIMATION OF FICKS LAW 5* 10 DIMENSION ATIME(10), AREMOV(10), UVAL(10) 15* 20 ATIME(1) = 60.030 ATIME(2) = 40.0ATIME(3) = 30.040 50 ATIME(4) = 20.060 ATIME(5) = 10.070 ATIME(6) = 5.080 ATIME(7) = 2.085* 90 WRITE(6,99) 100 WRITE(6,100) READ(5,101) DVAL 110 120 WRITE(6,110) 130 READ(5,101) ARVAL 140 WRITE(6,115) READ(5,101) AEQUIL 150 155* 160* MAIN CALCULATIONS 165* 170 DO 50 IJOB = 1,7ANUM = (DVAL*ATIME(IJOB)*((22.0/7.0)**2.0))/180 (ARVAL)**2.0 190 AENUM = EXP(-(ANUM))UVAL(IJOB) = (1.0 - AENUM) **0.5200 210 AREMOV(IJOB) = AEQUIL*UVAL(IJOB) 220 50 CONTINUE 225* 230 WRITE(6,125) 240 WRITE(6,126) 245* 250 DO 95 IPRINT 1,7 WRITE(6,130) ATIME(IPRINT), UVAL(IPRINT), AREMOV(IPRINT) 260 270 WRITE(6,131) 280 95 CONTINUE 285* 290 WRITE(6,200) 300 READ(5, 101) AEND 310 IF(AEND .LT. 2.0) GO TO 1 320 GO TO 900 325* 330* THIS IS THE FORMAT SECTION 335* 340 99 FORMAT(/2X, 'THIS PROGRAM IS A ESTIMATION OF FICKS LAW') 350 100 FORMAT(/2x, 'THE VALUE FOR THE D VALUE IS, MM**2/MIN') 360 101 FORMAT(F15.10) 370 110 FORMAT(/2X, 'THE VALUE FOR THE MEAN RADIUS IS, MM')

380 115 FORMAT(/2X,'THE EQUILIBRIUM VALUE FOR THE % NA REMOVED IS') 390 125 FORMAT(//2X,'RESIDENCE FRACTION OF EQUILIBRIUM FRACTION CATION REMOVED') 400 126 FORMAT(50('*')) 410 130 FORMAT(/2X,F6.2,' * ',F8.5,' * ',F8.5) 420 131 FORMAT(/50('*')) 430 200 FORMAT(///2X,'IF YOU WANT TO CONTINUE PRINT 1.0, ELSE 5.0') 435* 440 900 STOP 450 END Appendix B RAW DATA

TABLE 5

AS RECEIVED COAL ANALYSIS

Particle	Moisture	Ash	Sulfur	Ions Present										
Radius, mm	8	(Dry Basis	8)	·	µg/g	MAF C	oal			% Oxi	de in	Ash		
		00		Na	K	Mg	Ca	Al	Na 20	к20	MgÖ	CaO	A1203	
2.013	23.5	4.26	0.07	2670	159.0	1390	6240	2950	8.2	0.4	5.2	19.7	9.6	
	24.5	3.46	0.14	2360	99.8	1280	6240	2560	8.9	0.3	5.9	24.4	10.2	
	24.3	3.56	0.17	2750	134.0	1160	5440	3350	10.1	0.4	5.3	20.7	13.1	
0.502	24.3	3.59	0.04	3150	186.0	1610	6010	4460	11.4	0.6	7.2	22.6	17.2 c	α
	22.8	3.62	0.15	3120	169.0	1030	5250	2990	11.3	0.6	4.6	19.6	11.4	4
	23.2	3.67	0.16	2670	175.0	1160	5410	3660	9.4	0.6	5.1	19.9	13.7	
	23.5	3.71	0.15	2790	166.0	1180	5750	3250	9.9	0.6	5.1	21.2	12.2	
0.178	24.1	3.81	0.08	2930	215.0	1310	6510	3990	10.0	0.7	5.5	23.1	14.4	
	23.3	3.86	0.16	2780	196.0	1130	5530	3590	9.5	0.6	4.7	19.3	12.8	
	23.3	3.90	0.18	2910	160.0	1180	5460	3930	9.7	0.5	4.8	18.9	13.9	
0.082	22.6	3.99	0.05	2530	180.0	1170	5750	3690	8.2	0.5	4.7	19.3	12.6	
Ave	23.4	3.70	0.13	2790	167.0	1240	5780	3490	9.6	0.5	5.2	20.7	12.7	

MAF = Moisture, Ash Free Ave = Arithmetic Average Value

TABLE 6

RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used ^I ,	Ion Con	centra	Sample,	ppm	
min		g,ml,ml	Na	K	Mg	Ca	Al
1440	S	0.0780	6	0.7	10	90	74
	LR	55.0	220	4.5	60	224	33
	RR	4.0	25	4.55	1.5	14	0.5
180	S	0.1069	40	1.5	25	126	84
	LR	55.0	140	3.6	30	126	10.9
	RR	4.5	15	1.4	2.5	12	0.5
150	S	0.1007	41.5	2.0	29	137	82
	LR	53.7	140	3.4	28	113	9.3
	RR	4.0	12.5	0.55	2.5	15	0.65
120	S	0.0923	41	1.1	24	120	88
	LR	57.0	110	2.4	26	103	6.9
	RR	4.5	15	0.65	3.5	14.5	1.0
80	S	0.0975	41	1.8	26	125	100
	LR	54.0	90	2.6	24	97	5.2
	RR	4.2	12	0.4	3.6	15	0.5
40	S	0.0932	42	4.0	25	114	76
	LR	57.0	100	3.50	16	68.4	2.2
	RR	5.6	30	0.75	4.5	21.4	1.0
30	S	0.0962	53	4.2	26	122	83
	LR	58.0	68.5	1.2	13	56	7.8
	RR	5.0	30	0.95	4.0	19.5	2.9
20	S	0.0921	55	1.9	22.0	128	69
	LR	57.5	58	1.1	9.5	41	5.9
	RR	5.0	35	0.55	4.5	11.8	4.9
10	S	0.0999	65	4.2	42	177	77
	LR	57.0	50	0.85	2	9	2
	RR	5.5	45	0.9	6	25.5	2.5

Residence Time,		Amount Used ¹ , g,ml,ml	Ion Co	ncentra	tion in	Sample,	ppm
min			Na	K	Mg	Ca	Al
7	S LR	0.0851 57.0	59 44	2.4	31 6	136 34.5	79 3
	S	0.0943	45 60	2.8	30	146	5
5	LR RR	58.2 5.0	40 60	0.9 1.1	1.5 9.5	7 36	1.5 2.5

TABLE 6 continued

1S = Processed Coal in grams
LR = Liquid Recovery in ml
RR = Rinse Recovery in ml

TABLE 7

RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used,	Ion Concentration in			Sample,	ppm
min		g,ml,ml	Na	K	Mg	Ca	Al
1440	S	0.0435	2.5	0.3	3	27	57
	LR	55.0	220	4.8	74	350	55
	RR	5.0	30	0.7	6.5	32	5
150	S	0.0804	9	1.1	10	63	85
	LR	54.0	230	5.3	58	252	26
	RR	4.0	32.5	1.3	8	35.5	3
80	S	0.0867	8	1.2	12	76	100
	LR	57.0	200	4.2	66	262	18.7
	RR	5.0	30	1.65	11.5	48.5	3.5
40	S	0.0708	13.5	1.4	9	71	77.2
	LR	55.0	230	5.8	44.3	222	13.9
	RR	5.8	32.5	0.85	7.3	38	2
30	S	0.0751	16	0.75	14	66	84
	LR	58.0	260	5.8	36	182	5
	RR	6.0	40	0.8	8.5	48	5
20	S	0.0788	22	1.6	16	91	112
	LR	57.0	220	8.8	60	188	12
	RR	5.8	45	1.85	20	36.5	10
10	S	0.0841	29	1.5	18	92	102
	LR	59.0	160	8.6	28	148	4
	RR	5.9	65	2.8	15	66.5	10
5	S	0.0887	36.6	2.1	34.6	122	85.3
	LR	59.0	160	4.15	23.6	136	4.8
	RR	5.7	95	1.8	21	95	0

Residenc Time,	е	Amount Used ¹ , g,ml,ml	Ion Concentration in			Sample,	ppm
min			Na	K	Mg	Ca	Al
	S	0.0927	41.9	2.8	42.0	132	99.1
2	LR	59.0	120	3.6	17.2	96.3	2.8
	RR	6.0	145	4.6	14.5	61.5	9

TABLE 7 continued

¹S = Processed Coal in grams LR = Liquid Recovery in ml RR = Rinse Recovery in ml
RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used ¹ ,	Ion Con	centra	Sample,	ppm	
min		g,ml,ml	Na	K	Mg	Ca	Al
	S	0.0650	2.6	0.4	2	40	91.6
40	LR	55.5	250	4.7	77.6	297	26.6
	RR	5.9	50	0.5	10.9	54	18.7
	S	0.0625	1.7	1.2	9	54	101
30	LR	58.0	240	4.4	80	388	18.8
	RR	6.6	65	1.25	9	63	0.5
	S	0.0727	1.6	0.9	8	49	83.4
20	LR	57.5	270	4.6	72	346	16.6
	RR	5.9	45	1.1	12.5	62.5	0.5
	S	0.0707	5	1.2	9	49	88
10	LR	56.9	270	4.7	70	288	17.8
	RR	5.9	65	1.3	22	96.5	12.5
	S	0.0778	8	2.3	12	61	84
7	LR	56.7	250	6.5	56	272	11.1
	RR	5.3	75	5.3	25	118	1.0
	S	0.0793	8	4.2	11	61	86
5	LR	57.9	260	4.8	58	250	8.8
	RR	6.0	75	1.8	30	125	0

RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.082 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used ^I ,	Ion Con	central	Sample,	ppm	
min		g,ml,ml	Na	K	Mg	Ca	Al
40	S	0.0510	4.5	0.8	6	25	68
	LR	56.0	280	4.9	72	344	28
	RR	5.2	77.5	1.4	17.8	85	20
30	S	0.0700	5	1.0	9	41	91.5
	LR	52.0	270	5.2	79	326	31
	RR	6.0	105	1.7	30	128	10
20	S	0.0718	7	1.1	6	36.5	86
	LR	58.9	280	4.9	72	306	11
	RR	5.4	95	1.5	27.5	120	10
10	S	0.0645	7	0.6	6	39	79
	LR	52.0	240	4.0	50	324	13
	RR	6.0	155	2.4	47.5	200	13.5
5	S	0.0637	5	0.6	5	33	76
	LR	53.5	280	4.9	80	344	21.6
	RR	5.5	107.5	2.25	35	172.5	21.6
2	S	0.0735	7	0.56	6.5	49	87
	LR	54.5	230	4.9	55	252	9.6
	RR	6.0	90	1.6	40	188	16

RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1565 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used,	Ion Con	centra	tion in	Sample,	ppm
min		g,ml,ml	Na	K	Mg	Ca	Al
1440	S	0.0852	6	0.5	9	93	86
	LR	54.0	230	4.7	72	238	40
	RR	5.0	25	3.0	3.5	21	1.5
150	S	0.1017	40	2.3	29	142	90
	LR	54.0	130	2.9	28	132	10.2
	RR	6.0	5	0.55	3	14.5	1.5
120	S	0.1037	39.5	2.9	24	121	79
	LR	55.0	120	3.55	26	106	9.8
	RR	4.0	12.5	3.3	2.5	10	0.5
80	S	0.1095	35.5	2.9	20	99	57
	LR	55.0	100	3.3	24	90	8
	RR	4.5	12.5	2.35	2	14	0.5
40	S	0.0998	53	3.2	28	129	81
	LR	56.0	95	2.25	16.5	81	6.7
	RR	4.1	10	2.25	2.5	10.5	0.5
30	S	0.1008	54	3.2	29	137	71
	LR	56.7	75	2.2	14	69	4.8
	RR	4.5	25	3.25	3.5	17.5	1.5
20	S	0.1088	60.5	1.5	26.5	141	108
	LR	55.0	58	1.3	11	60	3.6
	RR	4.0	20	0.9	2.5	15	1.3
10	S	0.1021	42	2.3	20	109	63
	LR	57.0	43	1.2	7.5	40	2.4
	RR	4.0	30	1.5	5.5	25	0.5

Residence Time,	e	Amount Used		Ion Concentration in Sample				
min		g,ml,ml	Na	К	Mg	Ca	Al	
5	S	0.1016	56	3.4	25	136	97	
	LR	57.0	32	0.8	6	32	1.6	
	RR	4.3	30	1.35	5.8	22.5	0.5	
2	S	0.0937	51	1.7	21	114	75.5	
	LR	57.0	28	0.9	4.5	25	2.6	
	RR	4.0	35	1.85	6.5	31	1.3	

TABLE 10 continued

RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1565 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used ¹ ,	Ion Con	centra	tion in	Sample,	ppm
min		g,ml,ml	Na	K	Mg	Ca	Al
240	S	0.0697	3.5	0.7	8	51	78
	LR	55.0	230	5.8	60	282	39
	RR	4.4	35	1.5	7	34.5	5.5
120	S	0.0755	8.5	1.7	8	60	75
	LR	53.0	220	4.9	60	264	31
	RR	3.5	25	2.15	6	25	2.5
80	S	0.0788	10	0.5	9.5	63	77
	LR	54.0	210	4.7	54	230	27
	RR	4.0	25	1.1	5.5	28	2.5
60	S	0.0852	11.5	0.9	11	69	82
	LR	56.0	210	4.9	50	226	24
	RR	4.0	40	2.55	11.5	47	5
40	S	0.0972	17	1.4	16.5	91	91
	LR	56.5	235	4.8	48	206	20
	RR	4.0	30	3.2	7	20.5	3
30	S	0.0870	18	0.8	16	81	84
	LR	55.0	190	4.7	50	196	14.7
	RR	4.5	25	0.8	7.5	35	0.5
20	S	0.1014	24	1.1	19	97	82
	LR	56.5	180	4.6	36	154	13
	RR	4.5	45	1.65	13	53	3.5
10	S	0.0968	32	3.9	21	108	84
	LR	57.0	140	3.0	30	126	8.1
	R	4.5	50	1.7	13.5	59	5

Residence Time,		Amount Used ¹ ,	Ion Co	ncentra	Sample,	ppm	
min		g,ml,ml	Na	K	Mg	Ca	Al
	S	0.0942	35	2.9	24	112	81
5	LR RR	58.0 4.3	130 65	2.8	26 17	122 73.5	7 5.5
2	S LR RR	0.1018 56.0 4.5	46 95 90	3.2 2.2 1.8	25 17 19.5	121 80 83	90 4.1 6.0

TABLE 11 continued

RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1565 N Méan Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used ¹ ,	Ion Co	Ion Concentration in Sample,				
min		g,ml,ml	Na	K	Mg	Ca	Al	
40	S	0.0616	4	0.5	6.5	40	82	
	LR	55.0	220	4.95	72	338	33	
	RR	4.5	45	1.7	12	60	10	
30	S	0.0684	8	0.9	9	62	87	
	LR	56.0	230	4.55	66	290	25	
	RR	4.0	380	1.05	9.5	44.5	5	
20	S	0.0800	6	0.6	8	54	91	
	LR	57.0	220	4.4	62	210	22	
	RR	4.0	325	0.8	10	43	4.5	
10	S	0.0774	5	0.5	7	44	76	
	LR	57.0	195	4.0	64	280	16.1	
	RR	4.0	45	2.8	18.5	78.5	9.5	
5	S	0.0859	15	2.2	13	73	82	
	LR	56.0	155	3.5	48	204	10.1	
	RR	5.0	70	2.15	27	123.5	11.5	
2	S	0.1000	26	2.1	17	97	91	
	LR	57.5	150	3.1	36	153	7.3	
	RR	4.0	55	1.5	21.5	75	4.5	

RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1959 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used ^I ,	Ion Co	Ion Concentration in			ppm
min		g,ml,ml	Na	K	Mg	Ca	Al
	S	0.1015	5	0.5	10	104	92
1440	LR	54.5	220	5.9	62	204	41
	RR	4.7	10	1.55	3	14	1
180	S	0.1000	34	1.4	22	117	69
	LR	55.0	140	3.5	30	126	12.9
	RR	4.5	20	1.9	4	17	1.5
40	S	0.1022	34	2.2	23	93	77
	LR	57.0	75	2.6	18	84	4.9
	RR	4.5	20	1.05	3.5	16.5	1.5
30	S	0.1017	40	2.6	22	111	86
	LR	56.0	71	1.5	14	71	4.3
	RR	4.0	30	1.75	5.5	26	1.5
20	S	0.1063	44	2.0	26	106	66
	LR	56.2	63	1.7	11	59	3.7
	RR	4.2	40	1.85	5.5	24.5	0.5
10	S	0.1026	69	2.7	29.5	143	99
	LR	57.5	50	1.4	9	47	2.3
	RR	4.0	35	1.6	5	24	0.2
5	S	0.1000	70	1.8	30	145	102
	LR	57.0	36	1.2	12	61	1.6
	RR	4.0	35	1.6	4	21.5	0.2
2	S	0.1000	74	2.5	30	149	90
	LR	58.0	28	0.7	6	27	1.1
	RR	4.5	35	1.55	5	24.5	0.1

100

TABLE 14

RAW DATA FOR CATION REMOVED

 H_2SO_4 Concentration = 0.1959 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used ^I ,	Ion Co	oncentrat	ion in	Sample,	ppm
min		g,ml,ml	Na	K	Mg	Ca	Al
240	S	0.0642	5	0.5	5	53	70
	LR	52.5	240	5.1	70	304	47
	RR	4.3	20	0.85	7.5	38.5	4
80	S	0.0818	8	0.6	10	65	80
	LR	53.8	220	5.5	62	249	31
	RR	4.1	25	0.8	6	28.5	4.5
40	S	0.0816	14	1.3	15	82	80
	LR	55.5	210	4.7	54	221	22
	RR	4.5	35	1.0	9	42.5	4.5
30	S	0.0890	19	0.8	16	84	100
	LR	56.5	169	4.1	44	196	16.5
	RR	4.0	30	1.25	9	38.6	4
20	S	0.0971	27	0.9	18	89	100
	LR	56.5	156	3.8	40	182	13.5
	RR	4.5	35	1.55	9.5	36.5	1.0
10	S	0.0931	35	1.7	18	90	90
	LR	56.0	150	3.5	32	145	9.6
	RR	4.0	50	1.2	13.5	56.5	4
5	S	0.1039	44	1.6	20	102	90
	LR	57.0	120	2.8	26	116	6.3
	RR	4.0	55	1.25	15.5	63	6.5
2	S	0.0972	44	2.6	21	106	80
	LR	57.0	84	2.1	18	87	6.5
	RR	4.0	105	1.85	11.5	90.5	4

101

TABLE 15

RAW DATA FOR CATION REMOVED

H₂SO₄ Concentration = 0.1959 N Mean Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,		Amount Used ¹ ,		Ion Concentration in Sample,			
min		g,ml,ml	Na	K	Mg	Ca	Al
	S	0.0696	6	0.5	5	34	80
60	LR RR	55.7	230 30	4.9	72	338 43.5	42
	S	0.0706	6	0.6	8	44	80
40	T.R	53.0	230	6.8	70	318	32
10	RR	5.0	45	1.1	14	65.5	8.5
	S	0.0700	6	1.0	8	45	80
30	LR	56.0	230	5.3	58	262	30
	RR	3.5	15	2.7	4	21	3.5
	S	0.0801	6	1.2	8	48	100
20	LR	55.0	230	5.7	68	292	26
	RR	3.5	15	1.3	5.5	24.5	3.5
	S	0.0691	7	0.6	7	46	85
10	LR	56.0	270	5.3	68	306	27
	RR	4.2	40	1.55	18	84	12.2
	S	0.0820	9	0.7	9	59	96
5	LR	56.0	184	4.2	48	218	16
	RR	4.4	95	1.95	42	202	14.5
	S	0.0910	16	1.4	12	76	104
2	LR	56.0	162	3.7	38	176	9.6
	RR	4.8	110	2.15	80	247.5	15.5

RAW DATA FOR CATION REMOVED

H₂SO₄ Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 5/1

Residence Time,	Amount Used ¹ ,	Ion Co	Ion Concentration in			ppm
min	g,ml,ml	Na	K	Mg	Ca	Al
S	0.0678	9	0.6	5	43	78
1440 LR RR	39.8 4.4	520 95	17.4 9.55	160 26	705 137	96 13.5
S 240 LR RR	0.0685 44.0 4.0	8 450 40	0.9 94 1.05	7 108 4.5	53 516 22.5	86 60 0.5
60 LR RR	0.0849 44.0 4.0	15 420 50	1.4 8.5 2.05	14 100 12.5	80 472 59.5	88 30 1.5
S 30 LR RR	0.0998 46.0 4.0	22 360 40	1.3 7.5 1.15	18 76 8	101 352 39.5	106 23 1
S 20 LR RR	0.1048 44.8 4.2	27 360 65	2.5 7.6 1.7	21 85 16	115 380 70.5	101 20 4.5
S 10 LR RR	0.1023 47.0 4.5	38 280 65	3.3 5.5 2.05	26 64 16.5	127 268 60	99 13 0
5 LR RR	0.0706 48.0 4.0	31 230 35	1.7 4.7 1.15	18 32 8	90 160 33.5	68 10 0
2 LR RR	0.1013 48.0 4.0	49 150 55	3.9 4.1 1.4	26 28 13	131 128 44	92 5 0

103

TABLE 17

RAW DATA FOR CATION REMOVED

H₂SO₄ Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 2/1

Residence Time,		Amount Used ^I ,	Ion Co	oncentra	in Sample, ppm		
min		g,ml,ml	Na	K	Mg	Ca	Al
	S	0.1084	34	3.0	19	139	112
1440	LR	28.0	1000	17.4	250	600	22
	RR	4.0	230	16.5	46	226	4.5
	S	0.1024	32	2.5	22	127	105
60	LR	32.5	840	15.8	200	790	31
	RR	4.75	160	3.1	27	119.5	2.5
	S	0.1056	35	1.8	22	127	109
30	LR	35.0	720	23.6	160	700	31
	RR	4.0	90	3.2	20	76.5	2.5
	s	0.1080	39	2.2	24	131	108
20	LR	36.0	700	16.2	140	920	30
	RR	4.5	70	2.15	16	75.5	2.5
	S	0.1116	45	2.9	24	129	101
10	LR	33.0	700	11.8	130	540	22
	RR	4.0	185	3.15	40	138	5.5
	S	0.1091	48	3.5	26	134	98
5	LR	33.9	580	10.2	80	410	14
	RR	3.8	175	2.8	35	117	4
	S	0.1046	55	3.5	27	140	96
2	LR	33.8	440	8.4	60	320	12.8
	RR	3.6	190	3.3	40	135	3

104

TABLE 18

RAW DATA FOR CATION REMOVED

H₂SO₄ Concentration = 0.1959 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 5/1

Residence Time,	Residence Time, min	Amount Used,	Ion Co	oncentra	tion	in Sample	e, ppm
min		g,ml,ml	Na	K	Mg	Ca	Al
	S	0.0583	8	0.6	5	46	68
1440	LR	41.0	500	13.5	160	640	142
	KK	4.2	85	10.5	27	178	2.4
	S	0.0892	11	1.1	12	75	95
60	LR	44.7	440	9.2	115	490	44
	RR	4.1	110	9.3	31	126	8
	S	0.0969	20	1.4	16	93	99
30	LR	44.5	380	7.7	110	405	34
	RR	4.0	155	2.6	17	68	8
	S	0.0979	24	1.5	16	94	101
20	LR	45.4	340	7.0	95	360	28
	RR	4.0	135	2.5	26	100	14
	S	0.1086	35	1.9	22	121	105
10	LR	46.0	270	6.6	75	285	18
	RR	4.0	90	1.9	28	106	11.5
	S	0.0994	39	2.7	22	115	96
5	LR	45.5	220	5.1	60	220	13
	RR	4.2	90	1.9	37	141	7
	S	0.1078	53	3.3	26	137	97
2	LR	46.0	170	4.1	45	170	9
	RR	4.0	65	1.95	37	130	6.5

ANALYSIS OF PROCESSED COAL

H₂SO₄ Concentration = 0.1070 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ash					Ions P	resent				
Time, minute	Content, %	Content, (Dry		μg/	g MAF	Coal			& OX	ide in	Ash	
1440		Basis) %	Na	К	Mg	Ca	Al	Na 20	к20	MgO	CaO	A1203
1440	29.9	2.23	175	19.6	292	2630	2160	1 0	0 1	2 1	16 1	12 5
180	29.5	3.17	1220	45.9	766	3860	2570	5.0	0.2	3 9	16 5	11.2
150	28.4	3.00	1270	61.4	891	4210	2520	5.5	0.2	4.8	19 1	11.2
120	29.3	3.25	1490	40.0	873	4370	3200	6.0	0.1	4 3	18 2	13 6
80	29.4	3.49	1520	68.2	964	4640	3710	5.7	0.2	4.4	18.0	14 7
40	29.1	3.55	1660	158.0	987	4500	3000	6.1	0.5	4.5	17.1	11 6
30	28.4	3.32	1890	150.0	928	4360	2960	7.4	0.5	4.5	17 8	12 3
20	32.2	3.05	1880	64.9	751	4370	2360	8.1	0.3	4.0	19.4	10 7
10	29.1	3.29	2180	141.0	1410	5930	905	8.8	0.5	7.0	24 8	3 9
7	29.5	3.24	2320	94.4	1220	5350	3110	9.4	0.3	6.1	22.4	13 3
5	29.5	3.21	2110	98.5	1060	5130	2500	8.6	0.4	5.3	21.7	10.8

ANALYSIS OF PROCESSED COAL

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ash					Ions H	resent				
Time, minute	Content,	Content, (Dry		μą/	g MAF	Coal			% Ox	ide in	Ash	
1440		Basis) %	Na	K	Mg	Ca	Al	Na 20	к20	MgO	CaO	Al 203
1440	32.7	1.40	82	9 5	98	0.01	1960	0.0	0.1	1 1	0.7	
150	30.7	2.26	259	32.8	288	1810	2440	1 5	0.1	1.1	8./	18.7
80	34.0	2.39	226	35.0	339	2150	2820	1 3	0.2	2.1	12.2	15.1
40	33.7	2.68	525	55.2	350	2760	3000	2 6	0.2	2.3	14.0	10.5
30	31.0	2.68	559	26.2	489	2310	2940	2.0	0.1	3.0	11.7	15.0
20	31.9	2.85	819	60.7	596	3390	4540	3 8	0.2	3.0	16 2	22 1
10	31.6	2.81	997	51.2	619	3160	3510	4 7	0.2	3.4	15.2	17 2
5	31.0	3.07	1310	74.6	1240	4540	3050	5.6	0.3	6.5	20 1	12 0
2	31.2	3.11	1450	95.9	1450	4570	3430	6.1	0.4	7.5	19.9	15.3

ŧ

ANALYSIS OF PROCESSED COAL

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ash					Ions Pi	resent				
Time, minute	Content,	Content, (Dry		μg/g	g MAF	Coal			% Ox:	ide in	Ash	
		Basis) %	Na	К	Mg	Ca	Al	Na 20	к20	MgO	CaO	Al 203
40 30 20 10 7 5	36.7 35.6 37.6 35.7 35.5 35.8	2.22 2.20 2.45 2.47 2.48 2.71	62 90 145 179 261 281	42.9 14.2 17.1 44.1 75.2 148.0	327 69 193 322 392 386	1960 1380 1470 1760 1990 2140	3670 3160 3040 3150 2750 3020	0.4 0.5 0.8 1.0 1.4 1.4	0.2 0.1 0.1 0.2 0.4 0.6	2.4 0.5 1.3 2.1 2.6 2.3	12.1 8.6 8.2 9.7 11.0 10.8	23.1 20.1 17.3 17.8 15.5 15.5

ANALYSIS OF PROCESSED COAL

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.082 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ach					Ions P	resent				
Time, minute	Content,	Content, (Dry		μg/g	g MAF	Coal			% Ox	ide in	Ash	
		Basis) %	Na	К	Mg	Ca	Al	Na 20	к20	MgO	CaO	A1 203
40	44.1	2.12	191	34.0	255	1060	2890	1.2	0.2	2.0	6.9	19.1
30	36.0	2.13	155	31.1	280	1270	2840	1.0	0.2	2.1	8.2	18.7
20	43.0	2.35	235	37.2	201	1220	2880	1.3	0.2	1.4	7.1	17.1
10	44.3	2.49	277	24.9	238	1540	3130	1.5	0.1	1.6	8.4	17.5
5	47.6	2.35	189	22.7	189	1250	2870	1.1	0.1	1.3	7.3	17.1
2	43.9	2.89	283	22.7	263	1980	3520	1.3	0.1	1.5	9.3	16.9

ANALYSIS OF PROCESSED COAL

H₂SO₄ Concentration = 0.1565 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ash					Ions P	resent				
Time, minute	Content,	Content, (Dry		µg/q	g MAF	Coal			8 Ox:	ide in	Ash	
1440 2		Basis) %	Na	К	Mg	Ca	Al	Na 20	^к 2 ⁰	MgO	CaO	Al 203
1440	28.2	2.31	167	13.3	250	2580	2390	1.0	0 1	1.8	15 3	14 5
150	28.5	2.98	1210	69.5	876	4290	2720	5.3	0.3	4.7	19.6	12 7
120	29.0	3.20	1260	92.4	765	3160	2520	5.2	0.3	3.8	13.4	10.9
80	29.4	2.97	1420	116.0	800	3960	2280	4.4	0.3	3.0	12.7	7 4
40	27.9	3.19	1750	106.0	924	4260	2670	7.2	0.4	4.7	18.1	11 6
30	30.6	3.21	1780	105.0	954	4510	2340	7.3	0.4	4.8	19.0	10 1
20	28.9	3.90	2260	56.0	988	5260	4028	7.5	0.2	3.5	18.1	14 2
10	28.5	4.20	1800	98.8	859	4680	2700	5.5	0.3	3.3	14.9	8.8
5	29.9	3.67	2100	127.0	937	5100	3640	7.4	0.4	4.1	18.7	13.7
2	29.0	3.90	2220	74.1	915	4970	3290	7.4	0.2	3.7	17.1	11.6

ANALYSIS OF PROCESSED COAL

 H_2SO_4 Concentration = 0.1565 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ash					Ions P	resent				
Time, minute	Content,	Content, (Dry		μ g /g	g MAF	Coal			% OX:	ide in	Ash	
120		Basis) %	Na	K	Mg	Ca	Al	Na 20	к20	MgO	CaO	Al 203
120	33.7	2.29	264	52.8	248	1860	2330	15	0 3	1 0	11 1	14.2
80	32.4	2.36	307	14.7	291	1930	2360	1.7	0 1	2 0	11 2	14.2
60	32.5	2.68	372	28.1	356	2230	2650	1.8	0.1	2.0	11 3	13 0
40	30.6	2.63	472	38.1	459	2530	2530	2.4	0.2	2.2	13 1	13.0
30	31.9	2.76	587	26.8	522	2640	2740	2.8	0 1	3 1	13.1	12 0
20	32.5	2.78	677	31.9	536	2740	2310	3.2	0 1	3 1	13 1	11 6
10	33.1	3.03	1030	126.0	678	3490	2710	4.5	0.5	3.6	15.6	12 4
5	32.9	3.16	1210	100.0	831	3880	2810	5.0	0.4	4 2	16.6	12.4
2	31.8	3.21	1500	104.0	814	3940	2930	6.1	0.4	4.1	16.6	12.6

ANALYSIS OF PROCESSED COAL

H₂SO₄ Concentration = 0.1565 N Mean Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Residence M Time, C minute 40 30 20 10 5 2	Moisture	Ash			-		Ions P	resent				
	econtent,	(Dry		μg/g	g MAF	Coal			8 Ox:	ide in	Ash	
		Basis)	Na	K	Mg	Ca	Al	Na 20	к20	MgO	CaO	Al ₂ 03
	34.2 33.6 32.9 34.3 37.1 32.7	2.01 2.06 2.44 2.45 2.71 3.12	133 246 188 162 486 837	15.3 35.3 19.1 17.2 71.3 67.6	216 277 250 227 422 547	1330 1910 1690 1430 2370 3120	2730 2680 2840 2470 2660 2930	0.9 1.6 1.0 0.6 2.4 3.5	0.1 0.2 0.1 0.1 0.3 0.3	1.8 2.2 1.7 1.5 2.5 2.8	9.1 12.7 9.5 8.0 11.9 13.6	19.0 18.2 16.2 14.1 13.7 13.0

ANALYSIS OF PROCESSED COAL

 H_2SO_4 Concentration = 0.1959 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ash					Ions P	resent				L
Time, minute	Content,	Content, (Dry		μg/	g MAF	Coal			% Ox:	ide in	Ash	
1440		Basis)	Na	K	Mg	Ca	Al	Na 20	к20	MgO	CaO	Al 203
1440	30.1	2.92	148	14.8	2.96	3080	2730	0 7	0 1	1 6	1/ 3	12 0
180	29.9	3.16	163	44.7	718	3820	2250	0.7	0.2	3 7	16 1	13.0
40	27.6	3.63	1250	81.1	848	3430	2840	4.5	0.3	3 7	12 7	10.8
30	29.5	3.50	1430	92.7	785	3960	3070	5.3	0.3	3.6	15 3	12 1
20	28.8	3.36	1440	65.4	850	3470	2160	5.6	0.2	4 1	14 0	g 0
10	29.9	3.28	2280	89.2	975	4730	3270	9.1	0.3	4.8	19 5	13.8
5	29.6	3.27	2370	60.8	1010	4900	3450	9.5	0.2	5.0	20 3	14 6
2	29.4	3.54	2720	91.7	1100	5470	3300	10.0	0.3	5.0	20.9	12.9

ANALYSIS OF PROCESSED COAL

H₂SO₄ Concentration = 0.1959 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ash					Ions Pi	resent				
Time, minute	Content,	Content, (Dry		μg/g	g MAF	Coal			% Ox:	ide in	Ash	
		Basis)	Na	K	Mg	Ca	Al	Na 20	к20	MgO	CaO	Al 203
240 80 40 30 20 10 5 2	32.5 33.8 34.6 31.7 32.1 33.0 31.5 33.2	1.88 2.26 2.42 2.58 2.77 3.03 3.37 3.45	149 226 425 565 792 1170 1480 1620	14.3 17.8 38.3 23.8 26.4 57.1 53.7 95.6	149 283 456 476 528 604 671 772	1580 1840 2490 2500 2610 3020 3420 3900	2090 2260 2430 2980 2930 3020 3020 2940	1.1 1.3 2.3 2.9 3.8 5.1 5.7 6.1	0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.2 0.3	1.3 2.0 3.0 3.0 3.1 3.2 3.2 3.2 3.6	11.5 11.1 14.1 13.2 12.8 13.5 13.7 15.3	15.6 14.0 14.0 16.1 14.7 13.8 12.4 11.8

ANALYSIS OF PROCESSED COAL

H₂SO₄ Concentration = 0.1959 N Mean Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Residence	Moisture	Ash					Ions P	resent				
Time, minute	Content,	Content, (Dry		μg/g	g MAF	Coal			& Ox	ide in	Ash	
Ba 60 37 5 1	Basis) %	Na	K	Mg	Ca	Al	Na 20	к20	MgO	CaO	Al ₂ 03	
60 40 30 20 10 5 2	37.5 35.0 35.1 32.6 39.2 37.0 37.8	1.79 2.29 2.44 2.40 2.52 2.71 3.07	157 199 214 184 262 306 557	14.1 19.6 35.0 36.2 23.6 24.5 47.3	131 266 286 246 262 306 418	890 1460 1610 1470 1720 2000 2650	2090 2660 2860 3070 3180 3260 3620	1.2 1.2 1.2 1.0 1.4 1.5 2.4	0.1 0.2 0.2 0.1 0.1 0.2	1.2 1.9 1.9 1.7 1.7 1.8 2.2	6.8 8.7 9.0 8.4 9.3 10.1 11.7	16.4 16.2 16.4 17.9 17.6 16.7 16.3

ANALYSIS OF PROCESSED COAL

H₂SO₄ Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 5/1

Desidence	Mainhuma	2 - 1-					Ions P	resent				
Time, minute	Content,	Content, (Dry		µg/	g MAF	Coal			% Ox	ide in	Ash	
	-	Basis) %	Na	K	Mg	Ca	Al	Na ₂ 0	к20	MgO	CaO	Al ₂ 0 ₃
1440	34.7	1.81	245	16.3	136	1170	2120	1.8	0.1	1.2	8.9	16.4
240	29.8	1.96	233	25.4	204	1550	2510	1.6	0.2	1.7	10.9	18.0 -
60	32.7	2.49	451	41.5	421	2410	2650	2.4	0.2	2.7	13.2	14.8 0
30	31.6	2.81	637	36.8	521	2930	3070	3.0	0.2	3.0	14.2	15.2
20	33.1	2.79	739	68.5	575	3150	2770	3.5	0.3	3.3	15.4	13.8
10	31.6	3.03	1160	101.0	794	3880	3020	5.0	0.4	4.2	17.4	13.8
5	30.8	3.21	1460	79.9	846	4230	3190	5.9	0.3	4.2	17.9	13.8
2	30.2	3.41	1710	136.0	906	4570	3210	6.5	0.5	4.3	18.1	13.0

ANALYSIS OF PROCESSED COAL

H₂SO₄ Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 2/1

Residence	Moisture	Ash					Ions P	resent				
Time, minute	Content,	Content, (Dry		μg/g	MAF	Coal			% Ox:	ide in	Ash	
		Basis) %	Na	К	Mg	Ca	Al	Na 20	к20	MgO	CaO	A1203
1440 60 30 20 10 5 2	34.9 33.0 32.9 32.4 34.7 33.5 34.0	3.00 2.82 2.78 2.83 3.06 3.12 3.27	970 907 948 1050 1270 1420 1780	85.6 70.8 48.7 59.3 82.0 103.0 113.0	542 623 596 647 679 767 873	3970 3600 3440 3530 3650 3960 4520	3200 2980 2950 2910 2860 2890 3100	4.2 4.2 4.5 4.9 5.4 6.0 7.1	0.3 0.2 0.2 0.3 0.4 0.4	2.9 3.6 3.5 3.7 3.6 4.0 4.3	18.0 17.4 16.8 17.0 16.2 17.2	14.8 14.7 14.8 14.3 13.0 12.8

ANALYSIS OF PROCESSED COAL

H₂SO₄ Concentration = 0.1959 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 5/1

Residence	Moisture	Ash					Ions P	resent				
Time, minute	Content, %	Content, (Dry		µg/q	g MAF	Coal			% Ox	ide in	Ash	
		Basis) %	Na	K	Mg	Ca	Al	Na 20	к20	MgO	Ca0	Al ₂ 03
1440 60 30 20 10 5 2	33.8 34.6 33.9 33.8 33.4 34.0 33.2	1.71 2.49 2.71 2.87 2.97 3.14 3.01	239 315 575 724 986 1270 1530	17.9 31.5 40.2 45.3 53.6 88.1 95.0	149 344 460 483 620 717 749	1370 2150 2670 2840 3410 3750 3940	2030 2720 2850 3050 2960 3130 2790	1.9 1.7 2.8 3.3 4.4 5.3 6.7	0.1 0.2 0.2 0.2 0.3 0.4	1.4 2.2 2.7 2.7 3.4 3.7 4.0	11.0 11.8 13.4 13.5 15.6 16.2 17.8	16.7 15.2 14.6 14.8 13.8 13.8 13.8 12.9

Appendix C

RESULTS

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,					Cat	ion					
	Na	a		K	Me	q	C	Ð	D.	1	
minutes	Clos	8RN	Clos	%RN	Clos	\$RN	Clos	*RN	Clos	\$RN	
1440	111.9	94.0	81.0	75.2	79.5	71.7	89.7	51 3	71 7	15.0	
180	102.0	58.6	89.1	49.8	110.2	32.6	95.2	20 0	90 5	15.8	
150	113.9	57.3	104.8	40.4	94.2	27.8	92.1	20.0	72 9	4.3	
120	111.9	48.8	73.0	43.9	92.9	27.8	94.4	23 4	91 7	2.7	
80	99.6	42.5	100.9	32.3	95.2	23.7	95.0	20.7	103 0	1 7	
40	130.1	44.4	111.9	22.6	109.0	16.8	110.0	16.8	95.2	1.0	
30	113.2	33.1	104.3	9.9	100.2	15.9	102.3	14.9	95.8	3 5	
20	107.1	29.8	50.1	18.8	79.9	14.7	98.4	11 2	76 1	3 1	
10	122.2	24.1	84.6	7.8	132.2	2.3	124.7	2.4	29.6	3.4	
7	117.9	22.5	55.2	12.4	111.3	7.0	111 3	0 0	02 5	1 5	
5	108.2	22.1	69.6	11.4	98.4	2.8	105.3	2.5	99.1	0.9	
								2.0		0.5	

Clos = Material Balance Closure

%RN = Percent Cation Removed (Normalized)

119

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence					Cat	ion					
IIme,	Na	a.	к		Mc	4	0		7.7	1	
minutes	Clos	%RN	Clos	8RN	Clos	*RN	Clos	%RN	Clos	&RN	
1440	97.0	97.1	40.8	86.3	98.3	90.4	91.6	83.1	84.8	26.8	
150	105.4	91.6	57.6	66.6	96.3	71.1	85.7	63.0	92.0	11.5	20
80	108.1	92.1	91.0	61.1	91.6	71.9	91.5	61.6	81.9	5.1	
40	132.3	88.1	64.9	78.8	62.1	50.4	79.8	55.8	72.8	6.1	
30	128.6	85.7	57.9	74.0	61.4	48.8	80.6	50.6	69.9	2.3	
20	117.9	78.1	97.7	65.8	86.2	57.5	97.0	42.4	96.5	3.9	
10	102.0	69.2	93.9	70.0	62.4	39.1	86.4	39.7	79.4	1.9	
5	113.0	63.5	73.1	43.8	96.7	21.4	99.1	27.5	69.5	2.5	
2	103.0	55.6	82.8	36.4	104.2	14.3	94.5	20.3	77.5	1.6	

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Residence					Cat	ion					
Time,	Na	9	K		M	-	0		7.		
minutes	Clos	*RN	Clos	8RN	Clos	8RN	Clos	a %RN	Clos	&RN	
40	112.9	97.3	40.7	81.3	73.5	93.5	82.6	73.5	92.2	10.2	
30	113.2	98.3	53.4	60.3	94.7	78.0	111.4	74.3	94.9	6.9	27
20	109.9	94.3	82.8	76.1	80.6	79.2	91.3	69.8	103.9	7.8	
10	127.2	95.2	49.2	58.7	95.4	74.4	85.6	68.8	84.2	7 3	
7	121.0	92.6	76.8	54.2	87.3	65.5	86.5	64.4	72.6	4 9	
5	128.8	92.6	98.6	30.8	90.5	67.5	85.6	61.8	78.0	3.7	

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

 H_2SO_4 Concentration = 0.1070 N Mean Particle Radius = 0.082 mm Liquid/Solid Mass Ratio = 10/1

Residence					Cat	ion					
lime,	Na	a	K		Mo	r	C	3	7	1	
minutes	Clos	%RN	Clos	8RN	Clos	%RN	Clos	%RN	Clos	\$RN	
40 30	154.0	94.9 95.5	61.9 59.7	64.8 66.9	109.8	78.3 77.4	111.3 106.4	80.5 75.7	112.7 101.9	11.4	122
20 10 5 2	164.1 133.2 149.2 130.3	94.2 91.6 94.9 91.2	65.9 47.5 53.5 53.8	64.1 66.6 73.0 73.2	109.0 81.3 109.6 90.9	83.0 73.1 84.1 73.4	109.7 113.4 113.3 107.7	77.4 72.4 77.6 62.7	96.1 104.4 100.0 115.7	5.2 5.1 9.0 3.8	

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

 H_2SO_4 Concentration = 0.1565 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence					Cat	ion					
rime,	Na	a	K		M	T	C	-	7		
minutes	Clos	8RN	Clos	%RN	Clos	%RN	Clos	%RN	Clos	*RN	
1440	114.6	94.4	75.3	81.8	86.6	77.7	91.1	52.9	80.3	16.9	
150	106.7	57.1	106.7	34.4	92.7	28.5	96.8	27.7	78.1	4.5	23
120	105.0	54.5	141.2	33.9	82.9	29.9	85.0	25.7	72.7	4.7	
80	101.8	47.1	161.2	27.3	83.6	27.4	83.4	22.3	65.5	4.2	
40	112.6	41.1	137.6	22.5	86.2	18.7	86.7	19.6	75.9	3 1	
30	104.9	35.9	138.0	23.2	86.2	16.2	88.4	16.8	65 8	2 6	
20	113.5	24.8	73.5	23.4	85.3	12.4	98.2	12.7	111 6	1 1	
10	90.2	24.6	116.1	14.6	72.6	10.7	85.0	10.4	74 9	1 2	
5	95.6	17.1	140.2	8.7	77.1	8.2	90.1	7.9	100 1	0.6	
2	99.3	15.1	87.7	6.6	74.3	6.6	87.0	6.6	91.5	1.0	

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

H₂SO₄ Concentration = 0.1565 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence					Cat	ion					
Time,	NT										
minutes	Cloc	1 9 DN	Clos K	9.011	M	9	Ca	à la cara cara cara cara cara cara cara c	A	1	
minutes	CIOS	6 KIN	CIOS	3 KIN	Clos	∛RN	Clos	*RN	Clos	8RN	
240	111.6	96.4	54.4	76.9	86.1	75.1	94.5	69 0	79.2	16.9	
120	99.4	90.9	66.2	53.1	93.3	74.3	87.8	62.9	90 5	14 3	24
80	98.6	89.3	42.6	79.7	91.8	69.2	83.1	59.2	89.9	12.2	
60	104.5	87.8	54.0	69.4	96.0	64.2	89.4	56.3	98.5	10.3	
40	119.3	86.4	59.8	62.5	103.7	57.2	90.3	50.9	92.9	9.2	
30	102.8	80.4	50.2	68.7	110.8	54.4	57.0	74.9	97.5	6.2	
20	103.0	77.4	53.9	65.2	97.1	46.6	83.0	42.2	82.7	6.8	
10	98.6	64.0	97.5	24.1	103.8	36.9	90.2	32.4	93.9	3.8	
5	108.7	55.3	91.2	24.5	127.9	26.7	108.2	26.8	112.3	2.9	
2	95.5	46.1	78.5	22.0	101.2	22.2	88.1	21.6	99.6	1.9	

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

 H_2SO_4 Concentration = 0.1565 N Mean Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Resid	lence ne,					Cat	ion				
		Na	1	K		Mo	τ Γ	C	a	A	1
minu	ltes	Clos	8RN	Clos	%RN	Clos	%RN	Clos	%RN	Clos	*RN
4	40	104.0	95.4	40.2	80.5	99.5	80.7	101.1	76.2	87.8	13.3
	30	113.9	92.3	43.6	68.6	99.2	75.3	101.4	66.1	83.4	10.7
	20	108.9	93.8	39.1	75.1	93.6	76.3	80.0	61.9	87.2	9.2
1	10	96.9	94.0	39.0	77.5	94.5	78.7	92.2	72.0	74.6	8.1
	5	90.2	80.7	60.4	39.6	93.8	60.2	91.9	53.5	78.0	5.0
	2	101.2	70.5	55.8	38.1	91.6	47.1	93.6	39.7	84.3	3.3

Clos = Material Balance Closure %RN = Percent Cation Removed (Normalized) 125

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

H₂SO₄ Concentration = 0.1959 N Mean Particle Radius = 2.013 mm Liquid/Solid Mass Ratio = 10/1

Residence					Cat	lon				
11mc/	Na	ì	K		Mc	т	C	9	D.	
minutes	Clos	%RN	Clos	8RN	Clos	*RN	Clos	%RN	Clos	%RN
1440	104.0	94.9	60.8	83.5	94.6	72.3	100.9	45.3	95.3	15.8
180	105.5	60.5	62.6	49.6	99.9	33.7	99.9	28.6	74.0	6.5
40	80.8	44.3	78.4	30.1	95.9	21.9	81.1	24.5	85.4	2.2
30	85.1	39.5	77.1	18.2	85.9	18.9	87.8	19.0	92.3	1.8
20	83.0	36.6	60.7	25.8	89.4	14.5	77.7	18.1	66.0	2.1
10	106.0	23.1	73.9	18.2	97.1	11.2	96.1	11.9	97.3	0.9
5	103.0	17.4	52.5	21.5	103.8	13.6	102.3	14.2	102.1	0.6
2	112.3	13.0	69.6	10.7	104.9	7.1	104.8	6.5	97.7	0.4

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

 H_2SO_4 Concentration = 0.1959 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 10/1

Residence Time,					Cat	ion					
	Na	а	K		Mo	T	C	э	Δ.	1	
minutes	Clos	8RN	Clos	%RN	Clos	%RN	Clos	%RN	Clos	%RN	
240	112.2	95.0	43.1	81.0	84.9	84.8	96.5	69.6	72 2	21 1	
80	108.8	92.2	48.6	79.1	89.6	72.8	90.3	62.4	71.9	14.4	27
40	115.2	96.2	56.0	60.9	98.3	60.0	98.1	52.9	73.9	10.3	
30	102.3	79.4	44.0	69.1	90.0	54.4	93.0	50.3	86.9	6.7	
20	104.9	71.8	43.6	65.4	90.2	49.6	91.8	47.4	84.6	5.6	
10	116.1	62.3	58.4	44.2	87.9	40.8	90.6	38.4	85.7	4.0	
5	114.4	51.8	51.8	40.8	87.9	34.1	91.9	31.1	84.6	2.8	
2	104.1	42.0	70.9	23.1	87.3	23.8	94.2	23.5	82.4	2.9	
NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

H₂SO₄ Concentration = 0.1959 N Mean Particle Radius = 0.178 mm Liquid/Solid Mass Ratio = 10/1

Residence Time.					Cat	ion					
	Na	a	К		Mo	Ma		Ca		1	
minutes	Clos	%RN	Clos	%RN	Clos	*RN	Clos	%RN	Clos	%RN	
60	106.6	94.9	48.2	81.6	89.1	87.4	95.0	82.8	67.1	20.9	
40	103.9	93.4	63.9	80.9	95.3	76.3	97.7	72.7	77.5	12.9	a
30	108.5	93.2	65.3	66.5	87.1	72.1	90.4	67.5	82.4	11.8	
20	105.6	94.0	67.6	66.5	93.2	77.6	93.7	71.2	86.4	9.6	
10	128.5	92.9	57.6	74.3	97.1	76.9	103.9	69.6	90.2	10.0	
5	94.3	88.8	49.7	69.2	81.3	68.0	90.8	59.6	88.5	6.2	
2	94.3	79.6	60.4	50.9	83.9	57.6	94.1	48.5	95.7	3.7	

Clos = Material Balance Closure %RN = Percent Cation Removed (Normalized)

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

H₂SO₄ Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 5/1

Residence					Cat	ion					
IIIme,	Na	a	K		M	7	0				
minutes	Clos	*RN	Clos	8RN	Clos	3 %RN	Clos	a %RN	Clos	l %RN	
1440	111.2	92.1	70.0	85.9	86.4	86.6	87.9	76.9	81.3	19.9	
240	105.3	92.1	49.6	69.0	72.5	76.0	80.7	66.6	88.1	12.5	29
60	106.8	84.9	56.4	55.6	87.2	58.9	91.3	54.2	86.7	6.4	
30	104.0	78.1	50.9	56.3	85.1	47.9	89.4	43.1	98.8	4.5	
20	106.2	75.0	69.9	40.6	93.9	47.7	95.8	42.6	89.1	4.3	
10	106.8	61.1	82.8	26.5	103.1	34.5	97.7	31.1	95.3	2.7	
5	106.3	51.0	67.1	28.1	90.0	20.1	91.9	20.1	100.0	2.0	
2	97.1	37.1	98.6	16.8	93.2	17.3	94.2	15.8	99.4	1.0	
2	97.1	37.1	98.6	16.8	93.2	17.3	94.2	15.8	99.4	1.0	

Clos = Material Balance Closure %RN = Percent Cation Removed (Normalized)

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

H₂SO₄ Concentration = 0.1070 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 2/1

Residence Time,					Cat	ion				
	Na	1	K		Mo	7	Ca	a.	A	
minutes	Clos	8RN	Clos	8RN	Clos	\$RN	Clos	%RN	Clos	%RN
1440	105.0	66.9	74.5	30.4	87.8	47.3	89.9	23.2	99.6	1.3
60	100.5	67.7	64.4	33.6	91.4	41.9	93.5	33.1	93.4	2.3
30	95.9	64.7	63.8	53.9	83.6	39.3	89.0	32.9	92.9	2.5
20	99.5	65.2	60.1	40.4	84.7	34.9	100.8	39.1	91.7	2.5
10	103.4	56.0	66.0	25.0	83.6	30.8	85.1	25.5	89.3	1.7
5	100.0	49.3	77.1	19.0	81.9	20.1	85.7	19.7	89.9	1.1
2	101.3	37.3	80.4	15.1	86.9	14.5	92.0	14.5	96.2	1.0

Clos = Material Balance Closure %RN = Percent Cation Removed (Normalized) 30

NORMALIZED CATION REMOVED AND MATERIAL BALANCE CLOSURES

H₂SO₄ Concentration = 0.1959 N Mean Particle Radius = 0.502 mm Liquid/Solid Mass Ratio = 5/1

Residence					Cat	lon				
Time,	Na		K		Ma		Ca		21	
minutes	Clos	%RN	Clos	8RN	Clos	%RN	Clos	8RN	Clos	%RN
1440	109.8	92.2	59.8	81.9	89.8	85.9	87.5	72.7	86.6	28.1
60	109.0	89.6	55.9	65.8	90.2	67.4	90.4	58.5	92.2	9.0
30	105.7	80.5	53.3	54.3	96.5	59.4	89.6	48.1	93.8	6.9
20	103.5	75.0	54.2	49.6	92.1	55.4	88.8	44.5	99.2	5.6
10	97.3	63.7	57.9	44.1	93.9	43.8	91.2	35.0	94.5	3.9
5	95.9	52.6	72.8	27.0	94.4	35.3	90.2	27.7	98.7	2.6
2	93.9	41.8	73.5	78.1	89.4	18.7	88.3	22.3	87.7	2.1

Clos = Material Balance Closure %RN = Percent Cation Removed (Normalized)

Appendix D

CALCULATIONS FOR STATISTICAL ANALYSIS

Particle		0,0	Na Remov	al, X		
Radius,		Deside				
mm	10	Reside	nce Time	, minute	<u>s</u>	
	a 44 4	a 33 1	20 29 8	a 24 1	> 22 1	2.X
2.013	b 41.1	b 35.9	b 24.8	b 24.6	b 17.1	
	c 44.3	c 39.5	c 36.6	c 23.1	c 17.4	
	Σ129.8	Σ108.5	Σ 91.2	Σ 71.8	Σ 56.6	457.9
	a 88.1	a 85.7	a 78.1	a 69.2	a 63.5	
0.502	b 86.4	b 80.4	b 77.4	b 64.0	b 55.3	
	c 86.2	c 79.4	c 71.8	c 62.3	c 51.8	
	∑ 260.7	∑ 245.5	Σ 227.3	Σ195.5	Σ170.6	1099.6
	a 97.3	a 98.3	a 94.3	a 95.2	a 92.6	
0.178	b 95.4	b 92.3	b 93.8	b 94.0	b 80.7	
	c 93.4	c 93.2	c 94.0	c 92.9	c 88.8	
	∑286.1	283.8	E282.1	Σ 282.1	Σ262.1	1396.2
$\Sigma \mathbf{X}$	676.6	637.8	600.6	549.4	489.3	2953.7
$a = 0.10^{\circ}$	70 N H2S	0,	i = c	olumns (time)	
b = 0.150	$65 \text{ N H}_2^2 \text{S}$	04	j = r	ows (par	ticle rad	ius)
c = 0.19	2 ⁵⁹ N H2 ⁵⁰	4	к = g	roups (a	cia conce	ntration)
EEEX ² ij	k = 227,	958.17				
Σ(column	$^{2}) = (67)^{2}$	$(6, 6)^2 +$	$(637.8)^2$	+ (600	$6)^2$	
2 (COLUMIT	+	(549.4)	2 + (489	.3)2	0)	
	= 1,7	66,551.6				
5(20,2)	- (157 0	2 . (10	$(20, 6)^2$	(1206.2	,2	
2(10w :	= 3,368,) + (10 167	99.0) T	(1390.2)	
2/222222) _ (120	0)2 . (250 712		2 . (100	- 12
2 (group	· = (129	$(245 5)^2$	$(260.7)^{-1}$	+(286.1)	$)^{-} + (108)$	$(.5)^{-}$
	+	$(282.1)^2$	+(71.8)	$)^{2} + (19)^{2}$	$(5,5)^2 + ($	282.1)2
	+	$(56.6)^2$	+ (170.6	$)^{2} + (26)$	2.1)2	/
	= 598,	051.64				

CALCULATIONS FOR THE ANOVA TABLE

A) Determine the Sum of Squares

SSMean = $\frac{(\Sigma\Sigma\SigmaX_{ijk})^2}{ijk} = \frac{(2953.7)^2}{5*3*3} = 193,874.3$ SSTime = $\frac{\Sigma(\text{column}^2)}{jk}$ - SSMean = $\frac{1,766,551.6}{3*3}$ - 193,874.3 = 2409.2SSRadius = $\frac{\Sigma(row^2)}{ik}$ - SSMean = $\frac{3,368,167}{5*3}$ - 193,874.3 = 30,670.17 SSConc = $\frac{\Sigma(\text{group}^2)}{\text{ij}}$ - SSMean = $\frac{598,051.64}{5*3}$ - 193,874.3 = 102.0SSError = 227,958.17 - SSTime - SSRadius - SSConc - SSMean = 227,958.17 - 2409.2 - 30,670.17 - 102.0 - 193,874.3 = 902.5 B) Determine the F value for the F test $\frac{\text{MSTime}}{\text{MSError}} = \frac{602.3}{25.07} = 24.02$ F_{Time} = MSRadius 15,335.09 $F_{Radius} = \frac{1}{MSError} = \frac{1}{25.07} = 611.7$ $F_{Conc} = \frac{MSConc}{MSError} = \frac{51.0}{25.07} = 2.03$

134

	9	& Na Remov	ed, X
Time,	Liquid	to Solid	Mass Ratio
min	A	B	C
60	92.0	84.9	89.6
30	85.7	78.1	80.5
20	78.1	75.0	75.0
10	69.2	61.0	63.7
5	63.5	51.0	52.6
2	55.6	37.1	41.8
ΣΧ	444.1	387.2	403.2
ean, X	74.0	64.5	67.2
ΣXZ	33,820.35	26,643.24	28,705.1

CALCULATIONS FOR THE "STUDENT T-TEST"

¹Column headings A, B, and C represent the liquid to solid mass ratios of 10/1, 5/1, and 5/1, respectively. Headings A and B used a H_2SO_4 concentration of 0.1070 N, while heading C used a 0.1959 N H_2SO_4 concentration. A mean particle radius of 0.502 mm was used for all 3 mass ratios.

A) Determine the Variance for the 3 Mass Ratios

$$s_{x}^{2} = \frac{x^{2} - (\Sigma x)^{2}/n}{(n-1)}$$

where n is the number of observations in the sample and S^2_{x} is the calculated variance of the sample.

$$s_{A}^{2} = \frac{33,820.35 - (444.1)^{2}/6}{(6-1)} = 189.9$$

$$s_{B}^{2} = \frac{26,643.24 - (387.2)^{2}/6}{(6-1)} = 333.19$$

$$s_{C}^{2} = \frac{28,705.1 - (403.2)^{2}/6}{(6-1)} = 322.01$$

B) Determine if the Variances Differ

Null Hypothesis: $H_{o}: \sigma_{A}^{2} = \sigma_{B}^{2}$ $H_{o}: \sigma_{A}^{2} = \sigma_{C}^{2}$ $H_{o}: \sigma_{B}^{2} = \sigma_{C}^{2}$ Alternate Hypothesis: $H_{a}: \sigma_{A}^{2} \neq \sigma_{B}^{2}$ $H_{a}: \sigma_{A}^{2} \neq \sigma_{C}^{2}$ $H_{a}: \sigma_{B}^{2} \neq \sigma_{C}^{2}$ where σ^{2} is the true sample variance
If $F_{calc} > F_{5,5,0.975}$, reject $H_{o} F_{5,5,0.975} = 7.15$ (22)

 $F_{calc} = \frac{s_{A}^{2}}{s_{B}^{2}}$

 $F_{AB} = \frac{331.19}{189.9} = 1.74$ $F_{AC} = \frac{322.01}{189.9} = 1.70$ $F_{BC} = \frac{331.9}{1.70} = \frac{322.01}{1.70} = \frac{331.9}{322.01} = \frac{322.01}{1.03} = \frac{3$

The variance for the three mass ratios are not significantly different, and thus pairs of the variances can be pooled for use in the "t-test".

C) Pool the Variances

$$s_{p}^{2} = \frac{(n_{A}^{-1})s^{2} + (n_{B}^{-1})s^{2}}{\frac{n_{A}^{2} + n_{B}^{2} - 2}{n_{A}^{2} + n_{B}^{2} - 2}}$$

where S^2_p is the pooled variance.

Comparing A-B

$$s_{p}^{2} = \frac{(6-1)*189.9 + (6-1)*331.19}{(6+6-2)} = 260.6$$

$$\frac{\text{Comparing A-C}}{\text{s}_{p}^{2}} = \frac{(6-1)*189.9 + (6-1)*322.01}{(6+6-2)} = 255.96$$

 $\frac{\text{Comparing B-C}}{\text{s}_{p}^{2}} = \frac{(6-1)*331.19 + (6-1)*322.01}{(6+6-2)} = 326.6$ D) Complete the "t-test"
Null hypothesis: $H_{0}: \overline{X}_{A} = \overline{X}_{B} \qquad H_{0}: \overline{X}_{A} = \overline{X}_{C} \qquad H_{0}: \overline{X}_{B} = \overline{X}_{C}$ Alternate hypothesis: $H_{a}: \overline{X}_{A} \neq \overline{X}_{B} \qquad H_{a}: \overline{X}_{A} \neq \overline{X}_{C} \qquad H_{a}: \overline{X}_{B} \neq \overline{X}_{C}$ If $t_{calc} \qquad t_{5,0.975}$, reject H_{0} $t_{5,0.975}$ = 2.571 (22)

$$t_{calc} = \frac{x_A - x_B}{(s_p^2)^{1/2} * (1/n_A + 1/n_B)^{1/2}}$$

 $t_{calc} = \frac{74.0 - 64.5}{(260.6)^{1/2} \times (1/6 + 1/6)^{1/2}} = 0.72$

Comparing A-C

Comparing A-B

$$t_{calc} = \frac{74.0 - 67.2}{(260.6)^{1/2} * (1/6 + 1/6)^{1/2}} = 0.52$$

Comparing B-C

 $t_{calc} = \frac{67.2 - 64.5}{(322.01)^{1/2} * (1/6 + 1/6)^{1/2}} = 0.18$

Comparing A-B: Since t < 2.571, fail to reject H Comparing A-C: Since t calc < 2.571, fail to reject H^O Comparing B-C: Since t calc < 2.571, fail to reject H^O calc < 2.571, fail to reject H^O

Since for all combinations of mass ratios t $_{calc}$ < 2.571, there is no significant difference between the 3 liquid to solid mass ratios.

Appendix E

ABBREVIATIONS USED

AA

AA	atomic absorption spectrophotometry
ANOVA	analysis of variance
ASTM	American Society for Testing and Materials
Ave	Arithmetic Average
CA	concentration of A
CAR	coal as received
Cm	centimeter
Conc.	concentration
D	self-diffusion coefficient
Davg	overall average value for the self-diffusion coefficient
DB	dry basis
D.F.	degrees of freedom
g	grams
i.e.	in other words
JA	flux of ion exchange
M	moisture
MAF	moisture, ash free
MF	moisture free
min	minutes
ml	milliliter
mm	millimeter
MW	megawatt
N	normality
ppm	part per million
QAO	initial amount of A in ion exchanger

Q _{A∞}	amount of A in ion exchanger at equilibrium
Q _A (t)	amount of A in ion exchanger at time t
rpm	revolutions per minute
s ²	variance
sec	seconds
t	time of ion exchange
U(t)	fraction of attainment of equilibrium
v	volume
х	fraction of Na removed at equilibrium
SS	sum of squares
0_	
C	degrees centigrade
°F	degrees fahrenheit
90	percent

- µg microgram
- a partial derivative
- △ change in
- π pi, with a value of approximately 3.1416
- μ true sample mean
- σ true sample variance
- ε random experimental error

REFERENCES

- Wilkinson, J.F. (ed.) 1982: Another Year of Increased Sales. Coal Age, 87, 56 (Feb. 1982)
- Wilkinson, J.F. (ed.) 1983: A Better, More Stable Year. Coal Age, 88, 44 (Feb. 1983)
- 3. Rittenhouse, R.C. (ed.) Coal Supplies and the Economics of Treatment. Power Engineering, 86, 44-52 (June 1982)
- 4. Gronhovd, G.H., A.E. Harak, and P.H. Tufte. Ash Fouling and Air Pollution Studies Using Pilot-Plant Test Furnace. in Technology and Use of Lignite (J.L. Elder and W.R. Kube eds.), BuMines IC 8471, 1970, pp 69-88
- Wagner, R.J. Fireside Deposits in Lignite-Fired Boilers. in Technology and Use of Lignite (J.L. Elder and W.R. Kube eds.), BuMines IC 8304, 1965, pp 20-27
- Baria, D.N., W.R. Kube, and L.E. Paulson. Benefication of Lignite by Sodium Removal Using Ion Exchange. in Coal: Phoenix of the 80's, Proc. of the 64th CIC Coal Symp., Vol. 1, (A.M. Al Taweel ed.), 1981, pp 288-295
- Paulson, L.E. and W.W. Fowkes. Changes in Ash Composition of North Dakota Lignite Treated by Ion Exchange. BuMines RI 7176, Sept. 1968, 18 pp
- Baria, D.N., W.R. Kube, and L.E. Paulson. Reduction in Ash Fouling Potential of Lignite by Ion Exchange. in Recent Advances in Adsorption and Ion Exchange AICHE Symp. Series, Vol. 78, 1982, pp 54-63
- 9. Honea, F.I., S.J. Selle, and E.A. Sondreal. Factors Affecting Boiler Tube Fouling from Western Gulf Coast Lignites and Subbituminous Coals. Corrosion/79, National Association of Corrosion Engineers, 1979, 42 pp
- Honea, F.I., D.K. Rindt, R. Middleton, and D. Rothe. The Use of Additives to Reduce Ash Fouling Problems in Lignite-Fired Boilers. ASME Joint Power Generation Conference, 1980, 80-JPGC/Fa-3, 13 pp

- 11. Sondreal, E.A., P.H. Tufte, and W. Beckering. Ash Fouling in Combustion of Low Rank Western U.S. Coal. Comb. Sci. and Tech., 16, 95-109 (1977)
- 12. Gronhovd, G.H., A.E. Harak, and L.E. Paulson. Ash Fouling Studies of North Dakota Lignite. in Technology and Use of Lignite (W.R. Kube and J.L. Elder eds.), BuMines IC 8376, 1967, pp 76-94
- Peterson D. A Kinetic Model for Ion Exchange of Sodium from Lignite Using Sulfuric Acid. M.S. Thesis, University of North Dakota, 1981, 90 pp
- 14. Crystal, J.T. The Removal of Sodium from Lignite by Ion Exchange. M.S. Thesis, University of North Dakota, 1970, 24 pp
- Bekele, S. Removal of Sodium from Lignite by Ion Exchange in a Continuous Countercurrent Unit. M.S. Thesis, University of North Dakota, 1980, 77 pp
- 16. Badami, M. Ion Exchange of Sodium in Lignite by Calcium Using a Continuous Countercurrent Unit. M.S. Thesis, University of North Dakota, 1982, 104 pp
- 17. Paulson, L.E., and R.C. Ellman. Reduction in Sodium in Lignite by Ion Exchange: A Pilot-Plant Study. U.S. Dept. of Energy GFETC/RI 79/1, 1979, 50 pp
- 18. Tufte, P.H., G.H. Gronhovd, E.A. Sondreal, and S.J. Selle. Ash Fouling Potentials of Western Subbituminous Coals as Determined in a Pilot Plant Test Furnace. for Presentation at the American Power Conference, 1976, 15 pp
- Helfferich, F. Ion Exchange. McGraw-Hill Book Company Inc., New York, 1962, pp 255-261, 285
- 20. American Society for Testing Materials, 1977, Annual ASTM Standards, Part G, Gaseous Fuels: Coal and Coke; Atmospheric Analysis, pp D-3173, D-3174
- 21. Reski, B.T. Ion Exchange Equilibrium in North Dakota Lignite. Honors Thesis, University of North Dakota, 1980, pp 37-43
- 22. Bethea, R.M., B.S. Duram, and T.L. Boullion. Statistical Methods for Engineers and Scientists. Marcel Dekker, Inc., New York, 1957, 557 pp
- 23. Kunin, R. and R.J. Myers. Ion Exchange Resins. John Wiley & Sons, Inc., New York, 1950, p 31